美國現任總統川普(Donald J. Trump)於美國時間2020年12月4日簽署物聯網網路安全法(IoT Cybersecurity Improvement Act of 2020),針對美國聯邦政府未來採購物聯網設備(IoT Devices)制定了標準與架構。
該法要求美國國家標準技術研究院(National Institute of Standards and Technology, NIST)應依據NIST先前的物聯網指引中關於辨識、管理物聯網設備安全弱點(Security Vulnerabilities)、物聯網科技發展、身分管理(Identity Management)、遠端軟體修補(Remote Software Patching)、型態管理(Configuration Management)等項目,為聯邦政府建立最低安全標準及相關指引。如果使用政府機關所採購或獲取之物聯網設備無法遵守NIST制定的標準或指引,則不得續簽採購、獲取或使用該設備之契約。
安全標準和指引發布後,美國行政管理和預算局(the Office of Management and Budget)應就各政府機關的資訊安全政策對NIST標準的遵守情況進行審查,NIST每五年亦應對其標準進行必要的更新或修訂。此外,為促進第三方辨識並通報政府資安環境弱點,該法要求NIST針對聯邦政府擁有或使用資訊設備的安全性弱點制定通報、整合、發布與接收的聯邦指引。
雖然該法適用範圍限於聯邦政府機關,惟因該法限制聯邦政府機關採購、獲取或使用不符合NIST標準或指引的物聯網設備,將促使民間業者為獲取美國政府訂單而選擇遵循NIST標準,未來該標準可能成為美國物聯網安全的統一標準。
美國商務部工業安全局(Department of Commerce, Bureau of Industry and Security, BIS)於2020年6月15日宣布修改《出口管制規則》(Export Administration Regulations, EAR),調整美國企業和中國大陸華為公司商業往來的相關禁令,允許美國企業和華為合作制定5G標準。國際標準為技術開發的重要基礎,企業在標準制定的參與和領導力,將同步影響5G、自動駕駛、AI及其他尖端技術的未來發展;美國為鞏固全球創新領導地位,積極倡導國內產業參與標準制定成為國際標準,保護國家安全與外交政策利益。雖然華為及其關係企業在2019年5月,因存在重大國家安全風險,被美國商務部列入實體管制清單,禁止美國企業在未獲商務部許可的情況下與華為進行任何業務往來,但此項政策不應妨礙美國企業參與重要的國際標準制定活動。 本次《出口管制規則》補充「一般性暫行核准(Temporary General License)」附錄,允許華為及其68家關係企業在參與國際標準化組織與5G標準制定等特殊情形下,得依據美國行政管理和預算局(Office of Management and Budget, OMB)A-119號通知所制定之標準,取得《出口管制規則》中涉及EAR99或出於反恐原因被列入美國商業管制清單之貨品與技術。代表美國企業毋需取得商務部的暫行核准,也可以在國際標準制定組織中與中國大陸華為等公司分享用於制定5G標準的相關資訊,甚至合作制定5G標準。另外,《出口管制規則》僅在非出於商業目的之合法標準制定情況下,允許美國企業向華為及其關係企業揭露此類技術;若是出於商業目的揭露,仍然須受《出口管制規則》拘束並應保存記錄。
日本發布創新治理報告書,主張強化企業等對法規範形成的實質參與日本經濟產業省於2020年7月13日發布「創新治理:實現Society5.0的法規與結構設計(GOVERNANCE INNOVATION: Society5.0の実現に向けた法とアーキテクチャのリ・デザイン)」報告書。其作成背景係依據日本在去(2019)年G20峰會時,基於大阪框架(大阪トラック、Osaka Track)下的「可資信任的資料自由流通機制(Data Free Flow with Trust(DFFT))願景,所提出的創新治理目標。該目標指出,過往的治理模式主要依靠法律規範,但明顯已追趕不及數位化與創新的快速步伐,致生新型態風險無法獲得有效控管、法律可能阻礙創新等問題,因而有必要革新治理模式,以掃除創新活動的障礙。基此,就上述創新治理模式的必要性與方式,日本召集國內外法律、經濟、科技、經濟等各界專家徵求意見進行討論,彙整後作成本報告書。 本報告書主張,應擺脫法規範的設計、法遵與執行,均由國家主導的傳統模式,建立提高企業參與規範擬定與實施程度的治理型態。具體主要包含以下作法: (1)法規範制定層面:規範之制定方向,改以作成價值決定的目的導向為主。至於細節性的行為義務,包含企業如何在數位化的虛擬場域內,透過程式語言等途徑落實上述法目的,則應由該些企業、以及在虛擬場域活動的社群或個人等利害關係人共同參與擬定相關的指引或標準。 (2)法遵層面:如上(1)所述,未來法規範制定將轉為形塑價值與目的為主,不會明確訂定企業的行為義務,而交由企業來擬訂。企業所制定之行為規範能否達成法規範目的,則須仰賴企業主動揭露其法遵方法,供外界檢視。因此,除企業應採用創新手法達成法目的、並對內落實法遵事項的說明外,應運用各種內外部查核機制來控管風險。同時,應著手研發相關技術或措施,讓利害關係人得取用企業之即時資料,以隨時確認企業所採取方法有無達成法遵,實現有效監督。 (3)執法層面:政府應以企業之行為對社會產生影響的程度,作為執法標準。若遭遇AI參與決策而衍生的事故,不應歸責於個人,而應建立獎勵機制,鼓勵企業積極協助究明事故原因。另一方面,亦應推動訴訟與訴訟外紛爭解決機制的線上化(Online Dispute Resolution, ODR),例如共享經濟平台服務的認證機制與標準、就電商平台上發生的小額消費糾紛由平台透過公告罰則等方式抑止與處理糾紛。
Unicolors v. H&M一案可能翻轉美國著作權法§411註冊無效之認定標準美國最高法院於2021年11月8日聽取了Unicolors v. H&M案的口頭辯論,該案上訴法院認為著作權法§411所規定的註冊無效情況,並不以著作權人登記註冊時有主觀的詐欺意圖為限,應擴及到對錯誤事實有認知就足以使著作註冊無效,此一見解打破了先例判決。 依美國著作權法規定,著作權登記雖非取得著作權保護的要件,但著作權人須向官方進行註冊登記,才得以在美國提出著作權侵害的民事訴訟,使登記成為在美國主張著作權利之要件。 本案原告Unicolors主張被告H&M銷售之產品侵害其著作權,被告H&M主張原告Unicolors著作登記所涵蓋的31種面料設計並非同一天出版,不符合同一出版作品的要求,依美國著作權法§411規定,若申請註冊之資訊不正確,該錯誤資訊有導致該著作註冊無效的可能性,被告H&M此主張被上訴法院—第九聯邦巡迴法院所接受,法院認為著作權法§411所規定的註冊無效情況,並不以著作權人登記註冊時有主觀的詐欺意圖為限,應擴及到對於該錯誤有概括性了解就足以使著作註冊無效。 原告Unicolors於今(2021)年初向最高法院提交請願書,認為第九聯邦巡迴法院此一認定打破了先例判決。原告Unicolors主張,要使著作註冊無效,必須著作權人登記時有主觀上的重大錯誤,不能僅因著作權人對於法律或事實的誤解所產生的錯誤,就使得著作註冊無效。而被告H&M則再次強調該法條使用”knowledge”一詞,表示著作權人僅須對該錯誤事實有認知即可,解讀該法條時不應侷限於詐欺的主觀要件。 美國最高法院於日前聽取了Unicolors與H&M針對「著作註冊含有錯誤資訊」是否足以導致註冊無效的口頭辯論,目前預計於明(2022)年6月作出判決,若最高法院採認第九聯邦巡迴法院的見解,將有可能造成許多美國著作註冊無效的結果,值得業界留意。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
美國專利商標局發布「發明AI」分析報告,由美國專利申請趨勢分析AI技術普及情形美國專利商標局(USPTO)於2020年10月27日發布「發明AI:由美國專利觀察AI普及情形」(Inventing AI: Tracing the diffusion of artificial intelligence with U.S. patents)智財資料分析報告,本報告分析2002年至2018年共16年間美國AI專利之申請資料,發現在AI專利申請數量由3萬件成長至6萬件,成長幅度為100%,而在全體專利當中AI相關專利所占比率,也由原本的9%成長至接近16%,顯示在AI技術研發創新與普及率的顯著成長。 報告指出,自1950年圖靈(Alan Turing)提出「機器能否思考?」問題以來,現今AI技術的發展已經達到連圖靈也會讚嘆的水準,AI技術在發明領域的重要性益發提升,活躍於AI領域的發明人占全體專利權人的比率也從1976年的1%提升到2018年的25%,在組織的發明專利上也呈現相同的趨勢;除了美國銀行(Bank of America)、波音公司(Boeing)以及奇異電子(General Electric)之外,前30大頂尖的AI公司都來自資通訊領域,其中佔據首位者為擁有46,752項專利的IBM,其次為擁有22,076項專利的微軟以及10,928項專利的Google,而AI技術的應用領域也更加多元,並且與在地產業做結合,例如應用在奧勒岡州的健身訓練與設備以及北達科他州的農業上。 USPTO指出,經由專利資料分析顯示AI技術的發展不僅有顯著的成長,並逐漸與在地產業結合、落實在不同產業領域的多元應用,AI對於產業的影響力將不亞於電力或半導體,隨著AI領域發明人的顯著成長,未來將有更多AI技術在各領域的應用出現,而擴大AI影響力的關鍵在於發明者與公司能否成功將AI納入現有或新產品的功能、流程或服務之中。