美國現任總統川普(Donald J. Trump)於美國時間2020年12月4日簽署物聯網網路安全法(IoT Cybersecurity Improvement Act of 2020),針對美國聯邦政府未來採購物聯網設備(IoT Devices)制定了標準與架構。
該法要求美國國家標準技術研究院(National Institute of Standards and Technology, NIST)應依據NIST先前的物聯網指引中關於辨識、管理物聯網設備安全弱點(Security Vulnerabilities)、物聯網科技發展、身分管理(Identity Management)、遠端軟體修補(Remote Software Patching)、型態管理(Configuration Management)等項目,為聯邦政府建立最低安全標準及相關指引。如果使用政府機關所採購或獲取之物聯網設備無法遵守NIST制定的標準或指引,則不得續簽採購、獲取或使用該設備之契約。
安全標準和指引發布後,美國行政管理和預算局(the Office of Management and Budget)應就各政府機關的資訊安全政策對NIST標準的遵守情況進行審查,NIST每五年亦應對其標準進行必要的更新或修訂。此外,為促進第三方辨識並通報政府資安環境弱點,該法要求NIST針對聯邦政府擁有或使用資訊設備的安全性弱點制定通報、整合、發布與接收的聯邦指引。
雖然該法適用範圍限於聯邦政府機關,惟因該法限制聯邦政府機關採購、獲取或使用不符合NIST標準或指引的物聯網設備,將促使民間業者為獲取美國政府訂單而選擇遵循NIST標準,未來該標準可能成為美國物聯網安全的統一標準。
歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
英國政府公布物聯網設備安全設計報告,提出製造商應遵循之設計準則草案英國數位、文化、媒體暨體育部於2018年3月8日公布「安全設計(Secure by Design)」報告,此報告目的在於使IoT設備製造商於製程中即採取具有安全性之設計,以確保用戶之資訊安全。 此報告中包含了一份經英國國家網路安全中心(National Cyber Security Centre, NCSC)、製造商及零售商共同討論後,提出之可供製造商遵循之行為準則(Code of Practice)草案。 此行為準則中指出,除設備製造商之外,其他包含IoT服務提供者、行動電話軟體開發者與零售商等也是重要的利益相關人。 其中提出了13項行為準則:1. 不應設定預設密碼(default password);2. 應實施漏洞揭露政策;3. 持續更新軟體;4. 確保機密與具有安全敏感性的資訊受到保護;5. 確保通訊之安全;6. 最小化可能受到攻擊的區域;7. 確保軟體的可信性;8. 確保個資受到妥善保障;9. 確保系統對於停電事故具有可回復性;10. 監督自動傳輸之數據;11. 使用戶以簡易的方式刪除個人資訊;12. 使設備可被容易的安裝與維護;13. 應驗證輸入之數據。 此草案將接受公眾意見,並於未來進一步檢視是否應立相關法律。
淺談我國經濟部能源局建築能源效率管制措施淺談我國經濟部能源局建築能源效率管制措施 科技法律研究所 2013年3月25日 壹、事件摘要 行政院2012年9月份核定「經濟動能推升方案」,擘畫台灣2030年經濟藍圖。在該方案中,乃明示能源永續發展的重要性。經濟部能源局於2013年3月份公告修正「指定能源用戶應遵行之節約能源規定」,針對22,349家空調設備用電大之觀光旅館、百貨公司、零售式量販店、連鎖超級市場、連鎖便利商店、連鎖化妝品零售店、連鎖電器零售店及銀行、證券商、郵局、大眾運輸場站及轉運站等合計11類業者,實施「冷氣不外洩」、「禁用白熾燈泡」及「室內冷氣溫度限值」規定,預估每年可節省2,158萬度電。 經濟部能源局表示,11類服務業100年總用電量約71億度,其中空調用電量約占41%。觀鄰近中國大陸、南韓、日本政府均已針對營業場所訂有夏季室內空調溫度,並由公部門帶頭示範。台北市政府自2011年起亦開始推動「營業及辦公場所室內冷氣平均溫度須保持在攝氏二十六度以上」規定,實施至今有效促使約700家能源用戶(契約容量超過300kW)之空調均溫維持於二十六度,實施結果由99年不合格率32.3%,至101年不合格率降低為4.9%,顯示執行該規定有效可行。 貳、重點說明 經濟部能源局新修正公告之「指定能源用戶應遵行之節約能源規定」,乃著眼於建築物內部耗能之管制,而該管制措施乃近年來歐、美等先進國家亟力促進推動的建築能源效率(energy efficiency)議題。 參、事件評析 據統計,建築物耗能占人類經濟活動總碳排放量40%,而台灣地區舊建築物約莫占整體建築物97%,如何有效提升舊建築物本身之能源效率為重要課題。查內政部建築研究所之相關研究,建築物節能主要含括三個面向 - 外殼節能、空調節能及照明節能,因建築外殼節能為內政部營建署之管轄範疇,故經濟部能源局僅就建築物之空調節能及照明節能進行管制,本文將以美國聯邦能源部(Department of Energy, DOE)相關之法制政策為比較探討。 美國聯邦政府於2011年2月份正式啟動「更佳建築倡議」(Better Building Initiative),於2012年12月份能源部(Department of Energy, DOE)發布之進度報告(Progress Report)指出,目前建築能源效率存有若干投資障礙,第一,尚缺少能源效率投資成本節省之實證數據;第二,尚缺少潛在市場和技術解決方案之相關資訊;第三,能源效率作為商業最佳實踐尚未普遍被接受。基此,能源部將致力於促進能源效率投資並強化聯邦公部門示範作用等手段。 在促進能源效率投資上,因市場尚缺乏相關數據資訊,難就能源效率之市場價值進行驗證;將研議相關機制,作為未來融資和建築物改善的基礎。另在聯邦公部門強化示範作用上,將透過聯邦能源管理計劃(Federal Energy Management Program, FEMP)和節能績效契約(Energy Savings Performance Contract, ESPC),持續強化能源技術服務公司(Energy Service Companies, ESCO)進行聯邦建築物節能效益之提升和擔保。 此外,於該倡議旗下之「更佳建築挑戰」(Better Building Challenge)乃鼓勵民間部門之參與。以美國百貨業龍頭梅西百貨(Macy)為例,其承諾將透過能源資訊系統(EMS)之使用、觀察及分析,找出佔地一億七千九百萬平方呎的商業樓地板面積之關鍵能源機會。照明方面,該公司也以超過一百萬盞LED燈之替換與重點照明,在過去三年內減少了百分之七十的照明能源消耗。 綜上觀察,我國能源局新修正「指定能源用戶應遵行之節約能源規定」下「禁用白熾燈泡」規定,乃禁止十一類業者使用二十五瓦特以上之白熾燈泡於一般照明用途,近似於美國梅西百貨於「更佳建築挑戰」下所承諾之LED重點照明之實踐。此外,借鏡美國經驗,我國宜研議建立起台灣建築能源效率數據資訊之系統資料庫,助於未來舊建築改善市場之發展。
英國提出巨量資料下之個人資料保護應遵循資料保護法之原則