美國於2020年12月4日正式施行聯邦《物聯網網路安全法》

  美國現任總統川普(Donald J. Trump)於美國時間2020年12月4日簽署物聯網網路安全法(IoT Cybersecurity Improvement Act of 2020),針對美國聯邦政府未來採購物聯網設備(IoT Devices)制定了標準與架構。

  該法要求美國國家標準技術研究院(National Institute of Standards and Technology, NIST)應依據NIST先前的物聯網指引中關於辨識、管理物聯網設備安全弱點(Security Vulnerabilities)、物聯網科技發展、身分管理(Identity Management)、遠端軟體修補(Remote Software Patching)、型態管理(Configuration Management)等項目,為聯邦政府建立最低安全標準及相關指引。如果使用政府機關所採購或獲取之物聯網設備無法遵守NIST制定的標準或指引,則不得續簽採購、獲取或使用該設備之契約。

  安全標準和指引發布後,美國行政管理和預算局(the Office of Management and Budget)應就各政府機關的資訊安全政策對NIST標準的遵守情況進行審查,NIST每五年亦應對其標準進行必要的更新或修訂。此外,為促進第三方辨識並通報政府資安環境弱點,該法要求NIST針對聯邦政府擁有或使用資訊設備的安全性弱點制定通報、整合、發布與接收的聯邦指引。

  雖然該法適用範圍限於聯邦政府機關,惟因該法限制聯邦政府機關採購、獲取或使用不符合NIST標準或指引的物聯網設備,將促使民間業者為獲取美國政府訂單而選擇遵循NIST標準,未來該標準可能成為美國物聯網安全的統一標準。

相關連結
你可能會想參加
※ 美國於2020年12月4日正式施行聯邦《物聯網網路安全法》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8583&no=16&tp=1 (最後瀏覽日:2025/12/17)
引註此篇文章
你可能還會想看
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

英國強化對揭露居住地址資料保護規定

英國政府於2024年12月19日依據《經濟犯罪及公司透明法》(Economic Crime and Corporate Transparency Act)的授權,發布《公司及有限責任合夥企業(資料保護與揭露及相應修訂)辦法》(The Companies and Limited Liability Partnerships (Protection and Disclosure of Information and Consequential Amendments) Regulations 2024),該辦法已於2025年1月27日生效。 根據現行《公司(地址揭露)辦法》(Companies (Disclosure of Address) Regulations 2009),經營公司之個人應登錄並公開其個人資料,包含居住地址,以利利害關係人聯繫並確保其對業務負責。但公開個人資料,將導致詐欺和身分盜用之風險,因此現行《公司(地址揭露)辦法》規定於特定情形下,如經營公司之個人曾遭受家庭暴力,或從事警察、法官、議員等職務,得向主管機關申請保護其居住地址不對外公開。新辦法將進一步強化對個人隱私之保護,允許將居住地址作為公司註冊地址之情形,亦得適用前述居住地址保護之規定。此外,對於進行清算程序的公司,經營公司之個人亦得申請不公開其居住地址,惟為兼顧第三方權益,僅得於公司清算程序開始後六個月後提出申請,以便第三方對公司提起訴訟。 隨著科技發展,對於個人資料之保護日益重要,英國此次新辦法擴大居住地址保密適用情形,設法在隱私保護與利害關係人權益間取得平衡,其細緻化地衡酌資訊透明化及個人資料保護兩項基本原則之作法,或可成為我國未來在思考相關議題之參考。

美國州隱私法要求企業揭露資訊 企業應如何平衡隱私法與營業秘密的衝突

美國目前沒有聯邦的隱私法,由各州訂定州隱私法、產業隱私法,要求企業應揭露資訊以提升資訊透明度,然而隱私法要求企業揭露的資訊多涵蓋了企業的營業秘密。美國華盛頓州州長於2023年4月27日簽署《我的健康資料法(My Health My Data Act)》的州隱私法,其將消費者的健康資料廣義定義為「與消費者有關或具合理關聯的個人資料,可用於識別消費者過去、現在或未來的物理或心理健康狀況」,例如醫療相關資料、患者接受醫療服務的精確地理位置、透過非健康資料可推斷得出的資料。「非健康資料可推斷得出的資料」,如零售業者蒐集消費者近期採購的訂單內容(非健康資訊),並透過AI機器學習分析得出消費者可能懷孕的比例及預產期,藉此對該消費者投放零售業者的嬰幼產品的個人化廣告。 於《我的健康資料法》廣義定義「健康資料」下,導致消費者可要求企業提供的資料可能涵蓋了「企業長期累積之消費者使用資料、經演算法分析運用之消費者使用資料、共享消費者資料的第三方企業名單」等企業認為屬於其營業秘密的資料。 為平衡隱私法的資訊透明度及企業想保護其營業秘密,建議企業可先採取:  1.使公司的智財部門與資料保護部門合作,確保公司人員對公司營業秘密標的及範圍的認知一致,並盤點企業所有的營業秘密以製作、持續更新營業秘密清單。 2.企業在揭露受營業秘密保護的資料給消費者前,先與消費者簽訂保密契約,並參考前述營業秘密清單約定契約之保密範圍。 如企業欲採取更完備的營業秘密管理措施,建議參考資策會科法所創意智財中心發布的《營業秘密保護管理規範》。 本文同步刊登於TIPS網站(https://www.tips.org.tw)。

中國大陸推出「網絡文化經營單位」內容自審制度

  中國大陸文化部於日前頒布「網絡文化經營單位內容自審管理辦法」,要求「網絡文化經營單位」配置內容審核人員、建立內容管理制度。就其提供的數位産品、內容服務進行自我審核,以確保內容之合法性。   據中國大陸文化部表示,本次辦法的制定,亦是為了落實其國務院轉變政府職能、簡政放權的政策方向。特別在網路音樂、行動遊戲上,期待能透過企業自律機制,達到市場的有效管理。然而,由辦法中規定「按照法規規章規定應當報文化行政部門審查或者備案的網絡文化産品及服務,自審後應當按規定辦理」看來,此項「內容自審機制」暫時不會取代任何現有審批、備案制度。至於未來運作經驗的累積,相關規範是否會有所調整,以確實達到行政審批事項的下放、簡化目標,仍有待持續追蹤觀察。   此辦法預計於2013年12月1日起施行。未來相關內容審核工作,須透過經中國大陸文化行政部門培訓、考核,取得「內容審核人員證書」的人員進行。同時,在內容管理制度上,企業必須規範內容審核工作職責、標準、流程,保障內容審核人員獨立審核權限,並在內容管理制度完成制定後,報請所在地文化行政部門備案。對於台灣業者而言,在辦法施行後,應留意其合作之大陸「網絡文化經營單位」,是否符合上述規範,以避免對其產品拓展產生不利影響。

TOP