歐盟發佈Amazon違反反托拉斯法之初步調查結果,並將對其電商業務展開第二輪調查

  歐盟執委會於2020年11月10日對Amazon發佈反托拉斯調查之初步調查結果,針對其2019年7月之首次調查提出調查意見書(Statement of Objections, SO),認定Amazon使用大量非公開賣家資料,減少自身作為零售商之競爭風險,相關可能違反歐盟運作條約(TFEU)第102條禁止濫用市場主導地位。

  歐盟於2019年7月17日對Amazon展開首次反托拉斯調查。Amazon作為平台,具有雙重身分,第一個身分是作為零售商,在網站上銷售商品;第二個身分是作為平台商,提供第三方賣家銷售商品的市場。因此歐盟認為Amazon在平台上收集價格或活動統計資料,將調查Amazon和第三方賣家的標準協議中,是否允許Amazon分析賣家的買賣統計資料?以及第三方賣家使用「黃金購物車」(Buy Box)的機制為何?

  歐盟執委會調查說明,Amazon作為平台,可以大量使用第三方賣家資料,例如訂購及發貨數量、賣家收入、報價次數、物流資料、賣家表現評價、消費者索賠資訊等。然而相關統計數字及資料進入Amazon業務自動化系統,使Amazon零售業務可以大量使用上述非公開資料,以調整自身產品零售報價和業務決策,降低自身作為零售商的市場競爭風險。

  此外,歐盟執委會認為,Amazon的「黃金購物車」和「Prime label」機制,使平台上的第三方賣家必須選擇使用Amazon物流、倉儲和售後服務(Fulfillment by Amazon, FBA),才能取得平台的「黃金購物車」和「Prime label」標章,才可能增加產品搜尋曝光度、交易成功率,進而提高銷售量(據統計,Amazon平台超過八成之交易是透過黃金購物車完成)。因此導致消費者大多選擇購買曝光度高、也就是使用Amazon物流的賣家,形成賣家之間的不公平競爭。歐盟執委會後續將啟動第二輪調查,且未言明結束調查時間。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 歐盟發佈Amazon違反反托拉斯法之初步調查結果,並將對其電商業務展開第二輪調查, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8589&no=55&tp=5 (最後瀏覽日:2026/02/17)
引註此篇文章
你可能還會想看
美國和歐盟合作推動統一優良臨床試驗規範

  美國聯邦食品藥物管理局(U.S. Food and Drug Administration)和歐洲醫藥局(European Medicines Agency)在2009年7月31日共同公佈了一項名為優良臨床試驗行動(Good Clinical Practices Initiative)的合作計畫,期能藉由該計畫,使得不論是在美國或歐盟,所有臨床試驗之執行,都有遵守相同且適當的規範。   在醫藥品上市申請的實務中,因為大部份的醫藥品都會企圖向廣大的歐美市場扣關,同樣的臨床試驗通常也會分別提交到兩地的醫藥品上市許可申請程序中。故若兩地主管機關可以合作訂出統一的優良臨床試驗規範,則可避免因重複審查所造成的資源浪費,申請者也可以因為統一的規範而加速其在兩地審查的程序,且在跨國資訊交流整合下,也可為臨床試驗研究的參與者提供更好的安全基礎。   此次美國聯邦食品藥物管理局,和歐洲醫藥局合作之優良臨床試驗行動的幾個主要目標如下: 一、定期交換有關優良臨床試驗之實務操作資訊:交換的資訊包括(1)彼此的優良臨床試驗(Good Clinical Practices, GCP)查核計畫,以了解有那些臨床試驗或地點是對方會去查核的,就不需要重覆查核;(2)彼此受理的上市申請案件中,有關GCP的如科學上的建議或上市申請的結果等;以及(3)彼此執行GCP查核之結果。二、共同執行優良臨床試驗審查:藉此了解對方之GCP查核程序,並進而信賴彼此之程序,也藉由共同執行時之交流,提昇彼此查核之技巧,及精進查核之程序。 三、合作增進優良臨床試驗規範:藉由對彼此GCP相關法規、指導原則、和政策等的交流及了解,找出現有規範中可予以改進之處,以增進臨床試驗研究的品質。   自2009年9月1日起,此項合作行動將首先開始一個為期18個月的先期行動,在此先期行動結束後,兩主管機關將會共同發布一份包含其整體行動計畫,及雙方就各自既有法規或程序應予以調整部分。

何謂德國KOINNO創新採購中心?

  德國KOINNO創新採購中心是由德國經濟暨能源辦事處(Bundesministerium für Wirtschaft und Energie)轄下的倉儲管理、採購與物流經濟協會(Bundesverband Materialwirtschaft,Einkauf und Logistik e.V, BME)所執掌,該協會主要任務為關於政府採購與各領域的物流管理的研發成果技術移轉、促進職業與終生教育的補助與經驗交流,目的在於創造未來趨勢、經濟發展與鼓勵創新。而KOINNO創新採購中心的成立宗旨即是持續提供政府採購的創新來源,並引導具有創新元素的政府採購實踐為成功經驗與最佳練習。    其中政府採購方面,BME在2004年建立該平臺,其功能為提供使研發成果能最佳實踐的對話交流、創造未來發展趨勢與創新、將研發成果技轉給採購機關與提升政府採購的價值。德國慕尼黑國防大學的公共採購法學與管理研究中心(Forschungszenturm für Recht und Management öffentlicher Beschaffung der Universität der Bundeswehr München,FoRMöB)是KOINNO的合作夥伴,同時也是德國唯一以企業經營與法學觀點分析公共採購問題的跨領域研究中心。

美國聯邦巡迴法院針對標準必要專利合理授權金提出判斷標準

  2015年12月3日美國聯邦巡迴上訴法院(CAFC)對澳洲科學暨工業研發組織(CSIRO)控告美國網路設備大廠思科系統(Cisco Systems)所製造與販賣的IEEE 802.11a、802.11g、802.11n侵害其美國第5,487,069 號專利(以下簡稱系爭專利)一案撤銷原判決並發回重審。 其爭點在於: 1. Cisco主張區法院未採用標準必要專利慣用之最小可銷售專利實施單位(smallest salable patent-practicing unit)作為合理授權金計算基礎。 2. 區法院法官未審酌系爭專利納入標準化的情形及未就Georgia-Pacific 15項分析要素進行修改。 3. 區法院未適當考慮CSIRO與Radiata間的技術授權協議。 CAFC將本案撤銷發回重審,其理由如下: 1.本案不適用最小可銷售專利實施單位   CAFC認為最小可銷售專利實施單位非唯一的計算合理授權金的計算方式,故仍應考量個案不同而採不同的計算方式;其重點在於應將系爭專利與非系爭專利之技術特徵價值進行適當的區分,比較過去實際授權個案,判定系爭專利技術特徵在整體產品中的價值比例,確保權利金計算的正確性。 2.針對標準化專利應考量系爭專利受標準化的情況   依據美國專利法第284條規定,系爭專利自身的價值應與標準化後所生的附加價值加以區別,使其僅反映系爭專利為系爭侵權產品所帶來的價值。而原審法院計算系爭專利的合理授權金時,並未排除其他無關的技術特徵及區分系爭專利標準化後所帶來的附加價值。 3. 應審酌CSIRO與Radiata間的技術授權協議   Radiata為CSIRO為進行專利商品化而成立之子公司,後Radiata於2001年為Cisco所併購,並仍依據CSIRO與Radiata間的技術授權協議以每單位晶片產品為基礎授權金的計算方式,故其時間與區法院以假設性協商之可能發生時間點相同,故區法院未加以考慮乃係明顯錯誤。

美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。   美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。   與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。   但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

TOP