美國聯邦航空總署針對特殊類型無人航空器提出新的適航性準則

  美國聯邦航空總署(Federal Aviation Administration, FAA)於2020年11月23日針對10種特殊類型(special class)無人航空器提出新的適航性準則(airworthiness criteria),以納入更多聯邦法規第107篇(14 CFR Part 107)所無法涵蓋之複雜無人航空器應用類型,包括包裹運送(package delivery)。

  FAA目前正針對其所提出之適航性準則蒐集公眾之意見,故將相關特殊類型之無人機應用申請案公告於聯邦公報(Federal Register)中,提供30天予公眾針對該申請案之適航性表示意見,後續正式公布該適航性準則時亦會將相關意見納入考量。

  該適航性準則將成為特殊類型無人航空器之安全標準,並能夠為相關特殊類型之無人航空器取得型式安全審驗合格證明(type certificate)建立之參考準則之一。

  該適航性準則主要適用於重量在5-89磅之電動定翼(fixed wing)與旋翼(rotorcraft)無人機。FAA說明,該特殊類型無人航空器若通過此準則,僅表示其符合該適航性準則所規範之類型,惟其是否能夠執行飛行任務,尚須檢視有否符合FAA相關操作規範,包括操作人員是否取得許可證、操作之空域是否為禁限航區等。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國聯邦航空總署針對特殊類型無人航空器提出新的適航性準則, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8591&no=55&tp=1 (最後瀏覽日:2025/11/30)
引註此篇文章
你可能還會想看
美國競業禁止條款之修法趨勢及對離職員工之管理建議

  美國聯邦貿易委員會(The Federal Trade Commission, FTC)於2023年1月5日提出聯邦規則彙編(Code of Federal Regulations, CFR)之修正草案,其基於競業禁止條款(Non-Compete Clauses)將阻止員工離職及員工之競爭、降低員工的薪資、阻止新企業之形成及阻礙創新等立法目的,擬禁止僱用人及受僱人間約定競業禁止條款及使現有的競業禁止條款歸於無效。   美國亦有相關報導提到員工流動於技術領域尤為常見,因技術領域之企業對營業秘密高度重視,故對於員工離職到競爭對手會特別留意,例如加州的許多企業(尤其是位於矽谷之企業)會與員工簽署保密合約規範對於機密資訊的處理,部分合約甚至包含競業禁止條款以限制員工於離職後至競爭對手處工作,不論係保密合約或競業禁止條款,其目的均係延遲或避免員工於離職後帶走公司敏感資訊並將其用於對前僱主不利之用途。   聯邦規則之修正草案一旦通過,未來美國的企業將不得再以約定競業禁止條款之方式限制離職員工至競爭對手處工作,但企業仍可透過在員工離職前或離職後採取相關措施,盡早發現並降低離職員工竊取公司敏感資訊的風險,可採取的措施例如:   1.留意員工離職前是否有未經授權或為完成工作以外之目的複製或存取公司的資料之行為,意即,這些蒐集來的資訊是否將用於新公司的工作(如改良競爭對手的產品、擴大競爭對手的客群等);   2.對員工個人工作設備(如:公司提供之筆電及手機)或網路存取紀錄等進行調查,檢視是否有異常檔案存取紀錄或異常行為(例如是否突然大量刪除/複製檔案);   3.了解員工的離職原因及於離職後的規劃——可以了解員工未來可能從事的職業、就職的企業以調整離職前調查的程度;   4.留意員工於找到新雇主後是否仍持續使用公司的營業祕密——新雇主亦須留意的是,新進員工是否仍持續使用前公司的營業秘密,以避免公司被訴。   本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國FCC發布新廣電事業所有權限制規則的法規制定建議通知

  美國FCC在2011年12月22日發布了新廣電事業所有權限制規則的法規制定建議通知(Notice of proposed rulemaking, NPRM),進一步降低包括高功率無線電視台、廣播電台等地區性媒體集中、全國無線電視網所有權集中、以及地區性報社與無線電視台的跨媒體集中之管制密度。   廣電事業所有權限制規則自2000年之後歷經多次修正與涉訟,FCC於2003年的修正,於遭到2004年遭到聯邦第三巡迴法院的部份廢棄;2007年與2008年的修正,亦同樣遭到同法院的部份廢棄。而FCC在經2010年的四年一度檢視、並委託外界研究之後,再於此次進行修正、並諮詢各界。   FCC認為,寬頻網路確實使消費者轉向網路或行動平台接收新內容與影音節目,也連帶使媒體市場結構大幅變化。但新媒體目前尚未如傳統媒體般無所不在,主因是美國寬頻上網仍未普及,寬頻普及率僅70%;並有1400萬人無法接取寬頻基礎設施。而線上影音串流或下載節目皆要求最小寬頻頻寬,阻礙了新媒體的普及,因此廣電事業所有權限制規則對於維護競爭、在地化、多樣性、與保障少數族群、身心障礙者和女性的政策目標上,仍有存在必要。   此次NPRM重點如下: 1、維持地區無線電視所有權限制規則(Local Television Ownership Rule); 2、維持地區報社/地區無線電視跨媒體所有權限制規則(Newspaper/Broadcast Cross-Ownership Rule); 3、因既有地區無線電視、地區廣播所有權限制規則已足夠維護政策目標,廢除地區廣播電台/地區無線電視台跨媒體所有權限制規則(Radio/Television Cross-Ownership Rule); 4、維持複數全國無線電視網所有權限制規則(Dual Network Rule); 新訂少數族群與女性所有權保障規範。

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

何謂物聯網(Internet of Things, IOT)?

  物聯網是指明確可辨識的實體物件與虛擬的類網路代理架構的聯結。它是由馬克.維瑟於1991年所提出,指的是(個人)電腦作為機具設備的形式未來將逐漸消失,而替換為"智慧元件"的形式。當前人們關注的對象已經不再是物體本身,而是人們的各種活動中的物物相連。其在不知不覺中已經提供人們各式各樣的輔助,例如小型化的嵌入式電腦毋需操作,就可以提供各式各樣的輔助。這種微型的電腦,即所謂的穿戴式裝置,可以最大程度地結合不同感應器直接在服裝上出現。   數位化在多個層面正在改變我們的生活和工作方式。現代資訊技術幾乎使任何對象無論是家庭日常物品或工廠內的機器,都能用最小的空間達到強大的計算能力(所謂的“嵌入式系統”)。烤麵包機,洗衣機和機床都可由軟體控制,並可以透過網際網路相互、或與外部世界聯結。   物聯網在居家領域具體將以智慧住宅(Smart Home)形式呈現。運用智慧聯網技術將能獲得更多的舒適性和安全性、節約能源或提供適合各年領階層的生活與和起居。現有的解決方案可以透過智慧型手機遠端控制進行空調、電爐和燈具的使用。未來,洗衣機甚至可以自動尋找最優惠的電價決定洗衣服的最佳時間。   智慧家居若要成功,需得到消費者的接受。故物聯網解決方案必須具有可信賴性(資料保護、資訊安全)、能夠持久並可靠地運作,並能夠在未來繼續穩定地投入智慧家庭的行列。對於製造商和供應商而言,應該以在新的立場和視角來開拓一個新的市場。

TOP