美國聯邦航空總署(Federal Aviation Administration, FAA)於2020年11月23日針對10種特殊類型(special class)無人航空器提出新的適航性準則(airworthiness criteria),以納入更多聯邦法規第107篇(14 CFR Part 107)所無法涵蓋之複雜無人航空器應用類型,包括包裹運送(package delivery)。
FAA目前正針對其所提出之適航性準則蒐集公眾之意見,故將相關特殊類型之無人機應用申請案公告於聯邦公報(Federal Register)中,提供30天予公眾針對該申請案之適航性表示意見,後續正式公布該適航性準則時亦會將相關意見納入考量。
該適航性準則將成為特殊類型無人航空器之安全標準,並能夠為相關特殊類型之無人航空器取得型式安全審驗合格證明(type certificate)建立之參考準則之一。
該適航性準則主要適用於重量在5-89磅之電動定翼(fixed wing)與旋翼(rotorcraft)無人機。FAA說明,該特殊類型無人航空器若通過此準則,僅表示其符合該適航性準則所規範之類型,惟其是否能夠執行飛行任務,尚須檢視有否符合FAA相關操作規範,包括操作人員是否取得許可證、操作之空域是否為禁限航區等。
本文為「經濟部產業技術司科技專案成果」
日本《科學技術指標》為文部科學省直接管轄之國立實驗研究機關「科學技術與學術政策研究所(NISTEP)」於每年度發布,主要為讓閱讀者基於客觀而定量的數據,體系性地掌握日本國內科學技術活動的基礎資料,將科學技術活動區分為「研究開發費」、「研究開發人才」、「高等教育與科技人才」、「研究開發產出」、以及「科技與創新」等5個類別,同時制定約180個指標以表達日本國內狀況。本年度公布的《科學技術指標2019》,則新增了「日本與美國各部門擁有博士學位者」、「各產業研究人才集中度與高端研究人才活用程度間之關係」、「主要國家取得博士學位之人數的變動狀況」、「運動科學研究類論文動向」、「主要國家貿易額度的變動狀況」、「各國與各類型獨角獸企業數」等20個指標。 依《科學技術指標2019》分析,日本的研究開發費與研究者人數於日、美、俄、法、英、中、韓等七個國家中皆位居第三,論文數則為世界排名第四,受高度矚目的論文數世界排名第九,專利家族(Patent Family)數世界排名第一而與去年相同。就產業的部份,研究者中擁有博士學位者之比例依據產業類型的不同而有所差異,與美國相較,高階人才之實際就業情況未能充分發揮其所學。另一方面,就每一百萬人中有取得博士學位的人數,在各主要國家當中,僅有日本呈現減少的趨勢。
關於iPod專利的戰爭越演越烈蘋果電腦 (Apple Computer Inc.) , iPod 製造商,已經提起第二項訴訟以反擊其競爭對手, MP3 製造商創新科技 (Creative Labs Inc.) 所提出之專利訴訟。 以新加坡為基地的創新科技,世界第二大數位音樂播放器銷售商,上個月在加州的美國聯邦地方法院,控告蘋果電腦的 iPod 音樂播放器侵犯關於該公司旗下 Zen MP3 播放器介面的專利。同時,該公司也要求美國國際貿易委員會 (International Trade Commission, ITC) 禁止 iPod 在美國的販售與行銷。 蘋果電腦除了向威斯康辛的美國聯邦地方法院提出反訴之外,隨後再於上週向德州的美國聯邦地方法院控告創新科技的可攜式音樂播放器侵犯其數件關於軟體以及系統的專利,包括 MP3 在電腦上的顯示方式、如何編輯 MP3 播放器資料以及圖示的安排等。 創新科技發言人 Phil O'Shaughnessy 表示,最近數月以來,創新科技已經向蘋果電腦提出若干「溫和的解決方案」。他也表示,於交涉期間,或任何其他時間,蘋果電腦從未提及其列舉於訴訟中的那些專利。並且,創新科技已經預料到蘋果電腦的報復行動,也已經作好準備。
強制蒐集人體生物資料的人權標準-聯合國人權事務委員會的見解 醫療物聯網(The Internet of Medical Things, IoMT)醫療物聯網(The Internet of Medical Things, IoMT)之意義為可通過網路,與其它使用者或其它裝置收集與交換資料之裝置,其可被用來讓醫師更即時地瞭解病患之狀況。 就運用的實例而言,於診斷方面,可利用裝置來連續性地收集關鍵之醫學參數,諸如血液生化檢驗數值、血壓、大腦活動和疼痛程度等等,而可幫助檢測疾病發作或活動的早期跡象,從而改善反應。於療養方面,由於患者的手術後恢復時間是整個成本花費之重要部分,故縮短療養時間是減少成本之重要要素。可利用穿戴式感測器來幫助運動、遠端監控,追蹤各種關鍵指標,警示護理人員及時作出回應,並可與遠距醫療相結合,使加速恢復更加容易。於長期護理方面,可藉由裝置之測量與監控來避免不良結果與延長之恢復期。 由於機器學習和人工智慧之共生性增長,醫療物聯網之價值正在增強。於處理來自於感測器醫療裝置之大量連續資訊流時,資料分析和機器學習可更快地提供可據以執行之結論以幫助治療過程。惟醫療物聯網亦可能面臨安全與標準化之挑戰。由於醫療保健的資料是駭客的主要目標,任何與網路連接之設備都存在安全性風險。此外,隨著相關裝置被廣泛地運用,即需要標準化以便利裝置之間的通訊,製造商和監管機構皆需尋找方法來確保裝置可在各種平台上安全地通訊。