2020年11月3日,加州於其大選中以公投方式批准通過第24號提案(Proposition 24),該提案頒布《加州隱私權法》(California Privacy Rights Act,以下簡稱CPRA)。CPRA對加州消費者隱私保護法(California Consumer Privacy Act 2018,以下簡稱CCPA)所規定之隱私權進行重要修正,改變了加州的隱私權格局。
CPRA賦予加州消費者新的隱私權利,並對企業施加新的義務,例如消費者將有權限制其敏感性個人資料(例如財務資料、生物特徵資料、健康狀況、精確的地理位置、電子郵件或簡訊內容及種族等)之使用與揭露;消費者有權利要求企業更正不正確的個人資料;CPRA同時修改現有的CCPA的「拒絕販售權」,擴張為「拒絕販售或共享權」,消費者有權拒絕企業針對其於網際網路上之商業活動、應用或服務而獲得的個人資料所進行之特定廣告推播。CPRA亦要求企業對各類別之個人資料,按其蒐集、處理、利用之目的範圍及個人資料揭露目的,設定預期的保留期限標準。
CPRA另創設「加州隱私保護局」(California Privacy Protection Agency)為隱私權執行機構,該機構具有CPRA之調查、執行和法規制定權,改變了CCPA 係由加州檢察長(California Attorney General)負責調查與執行起訴的規定,並規定加州隱私保護局應於2021年7月1日之前成立。
CPRA將在2022年7月1日之前通過最終法規,且自2023年1月1日起生效,並適用於2022年1月1日起所蒐集之消費者資料,隨著CPRA的通過,預期可能促使其他州效仿加州制定更嚴格之隱私法,企業應持續關注有關CPRA之資訊,並迅速評估因應措施。
美國政府在9月15日宣布,為了減少基礎建設的相關費用以及降低政府運算系統的環境衝擊,因此設立Apps.gov網站,展示並提供經政府認可的雲端科技運用。 據美國聯邦政府CIO Vivek Kundra表示,Apps.gov網站是美國政府首度對外發表,針對減少IT花費政策的成果。目前美國政府IT預算幾乎都花費在設立資料中心,單在國家安全部下就設有23個資料中心,而這也造成了聯邦政府的資源消耗在2000年到2006年間增加了兩倍,為了落實減少基礎建設花費的政策,並基於安全性的考量,希望能夠盡量利用現有的系統。 美國政府目前推動的雲端運算倡議計劃有三個主要內容,第一個主要內容即為全新的Apps.gov網站,提供企業一個情報交換平台、社交媒介與雲端IT服務。雖然目前網站尚未完全運作,甚至還曾造成一連串的錯誤訊息,但美國政府當局仍希望該網站最終能成為一次即可滿足的服務商店(one-stop shop),可在一個平台上提供多種類的雲端運算服務。Kundra表示,美國能源部已經開始使用該網站執行部分相關業務。 該計畫的第二個重點則是預算,美國政府在2010年將會致力推動雲端運算領航計畫,並為此編列年度預算,希望能投入更多輕量的工作流程(lightweight workflows)至雲端科技的發展。而在2011年,美國政府則預計會發布相關指導準則至各機關部門。 最後,該計劃亦會配合安全性、隱私及採購等相關政策。Kundra表示,將會確保所有資料都受到完善保護。 Google創辦人之一Sergey Brin也宣佈Google將會投入部份雲端運算系統專供聯邦政府使用,此系統與Google提供給一般企業的系統相似,但會針對政府需求稍做修改。除了Google之外,Microsoft、Facebook、Salesforce.com及Vimeo等公司亦提供雲端運算服務予政府機關使用。
美國發布《新興科技優先審查架構》 加速政府機構導入AI技術美國聯邦總務署(General Service Administration)於2024年6月27日發布《新興科技優先審查架構》(Emerging Technologies Prioritization Framework),該架構係為回應拜登總統針對AI安全所提出之第14110號行政命令,而在「聯邦政府風險與授權管理計畫」(Federal Risk and Authorization Management Program,以下簡稱FedRAMP)底下所設置之措施。 一般而言,雲端服務供應商(cloud service providers)若欲將其產品提供予政府單位使用,需依FedRAMP相關規範等候審查。《新興科技優先審查架構》則例外開放,使提供「新興科技」產品之雲端服務供應商得視情況優先審查。 現階段《新興科技優先審查架構》所定義之「新興科技」係為提供下列四種功能的生成式AI技術: 1.聊天介面(chat interface):提供對話式聊天介面的產品。允許用戶輸入提示詞(prompts),然後利用大型語言模型產出內容。 2.程式碼生成與除錯工具(code generation and debugging tools):軟體開發人員用來協助他們開發和除錯軟體的工具。 3.圖片生成(prompt-based image generators):能根據使用者輸入之文字或圖像而產生新圖像或影像的產品。 4.通用應用程式介面(general purpose API):基於API技術將前述三項功能加以整合的產品。 美國政府為挑選最具影響力的產品,要求雲端服務供應商繳交相關資料以利審查,例如公開的模型卡(model card)。模型卡應詳細說明模型的細節、用途、偏見和風險,以及資料、流程和參數等訓練細節。此外,模型卡應包含評估因素、指標和結果,包括所使用的評估基準。 《新興科技優先審查架構》第一波的申請開放至2024年8月31日,且FedRAMP將於9月30日宣布優先名單。這項措施將使生成式AI技術能夠以更快的速度被導入政府服務之中。
FDA允許第一個可以直接對消費者進行個人基因遺傳的健康風險服務測試法-GHR「美國食品和藥物管理局(FDA)」於2017年4月6日准許「23and me個人基因遺傳健康風險服務測試(簡稱GHR)」進行行銷,FDA要求該測試方法可以一定準確度檢測出十種疾病及可能條件。GHR是第一個被美國食品藥物管理局授權允許直接對消費者進行測試並提供個人遺傳傾向及醫療疾病條件資訊給消費者的測試。 GHR試圖提供遺傳風險資訊給消費者,但這個測試無法確定人們發展成疾病或發病條件的總體風險,因為除了某些遺傳變體的存在,還有很多因素會影響健康條件的發展,包含環境以及生活方式的因素,因此該檢測可能可以幫助人們做選擇生活方式的決定或告知消費者專業的健康照護。 23and me的GHR測試是運作自隔離唾液樣品中的DNA,此檢測被測試超過500000個遺傳變體,其檢測關於發展成以下十種疾病或發病條件增加風險的存在與否,包括帕金森氏症(Parkinson’s disease)、阿茲海默症(Late-onset Alzheimer’s disease)、自體免疫問題(Celiac disease)、α-1抗胰蛋白酶缺乏症、早發性原發性肌張力障礙(early-onset primary dystomia)、因子XI缺乏症(factor XI deficiency)、高血病1型(gaucher disease type1)、葡萄糖6-磷酸脫氫酶缺乏症(glucose 6- phosphate dehydrogenase defiency)、遺傳性血色素沉著症(hereditary hemochromatosis)、遺傳性血栓形成(hereditary thrombophilia)。 此外,FDA更要求所有DTC測試在醫療用途目的上之使用必需要能跟消費者溝通,使消費者可以充分了解該測試法後選用。其中一個研究顯示,23andMe的GHR測試的相關資訊是容易被理解的,有90%的人能夠了解報告中所呈現的資訊。