《加州隱私權法(California Privacy Rights Act, CPRA)》現在備受關注;CCPA修正案

  2020年11月3日,加州於其大選中以公投方式批准通過第24號提案(Proposition 24),該提案頒布《加州隱私權法》(California Privacy Rights Act,以下簡稱CPRA)。CPRA對加州消費者隱私保護法(California Consumer Privacy Act 2018,以下簡稱CCPA)所規定之隱私權進行重要修正,改變了加州的隱私權格局。

  CPRA賦予加州消費者新的隱私權利,並對企業施加新的義務,例如消費者將有權限制其敏感性個人資料(例如財務資料、生物特徵資料、健康狀況、精確的地理位置、電子郵件或簡訊內容及種族等)之使用與揭露;消費者有權利要求企業更正不正確的個人資料;CPRA同時修改現有的CCPA的「拒絕販售權」,擴張為「拒絕販售或共享權」,消費者有權拒絕企業針對其於網際網路上之商業活動、應用或服務而獲得的個人資料所進行之特定廣告推播。CPRA亦要求企業對各類別之個人資料,按其蒐集、處理、利用之目的範圍及個人資料揭露目的,設定預期的保留期限標準。

  CPRA另創設「加州隱私保護局」(California Privacy Protection Agency)為隱私權執行機構,該機構具有CPRA之調查、執行和法規制定權,改變了CCPA 係由加州檢察長(California Attorney General)負責調查與執行起訴的規定,並規定加州隱私保護局應於2021年7月1日之前成立。

   CPRA將在2022年7月1日之前通過最終法規,且自2023年1月1日起生效,並適用於2022年1月1日起所蒐集之消費者資料,隨著CPRA的通過,預期可能促使其他州效仿加州制定更嚴格之隱私法,企業應持續關注有關CPRA之資訊,並迅速評估因應措施。

相關連結
你可能會想參加
※ 《加州隱私權法(California Privacy Rights Act, CPRA)》現在備受關注;CCPA修正案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8598&no=67&tp=1 (最後瀏覽日:2026/01/17)
引註此篇文章
你可能還會想看
IBM釋出500項專利

  IBM送大禮給開放原始碼軟體開發商,全美專利龍頭IBM宣布,釋出500項專利供軟體開發業者使用。此舉顯示IBM的智慧財產權策略有重大改變,而高科技產業同時將面臨挑戰。   IBM有意藉此在開放原始碼軟體開發業間建立專利共享的風氣,IBM資深副總凱利(John E. Kelly)表示,此舉是跨出一大步,希望其他人能追隨IBM做法,讓共享的專利能愈來愈多。另一位副總史托凌(Jim Stallings)指出,此舉是美國史上截至目前最大宗的專利開放案,意在鼓勵其它公司釋出專利以刺激科技創新。與此同時,美國專利商標局公布了去年度專利核發紀錄,IBM以獲得3248項專利勇冠全美,並將連霸紀錄推向連續12年,IBM去年度新添專利數量硬是比第二名的松下電器多出1314項。   IBM這次釋出的五百項專利,其領域涵蓋儲存管理、模擬多重處理、影像處理、資料庫管理、網路連結和電子商務。該公司希望透過此一開放授權計畫帶動開放原始碼軟體開發業的合作風氣,這有利將問題轉化成一個交流平台,也有助改良IBM的發明。   過去,IBM曉得利用專利授權創造更大利潤,這十年來IBM靠專利賺來的錢一直是勇冠全球,即使這次開放五百項專利,仍有數以千計的專利繼續為IBM賺取大筆佣金。大量開放專利的舉動造就IBM以較寬鬆定義重新詮釋專利法的先驅地位,評論家認為,這十年來的專利法改革侷限了軟體開發者的創新自由度,不再像促成個人電腦革新和網路革命的時空背景那般自由。IBM表示,該公司仍是專利的所有人,依舊保留運用專利對抗商用軟體製造商的權利。

美國參議院重新提出FDA現代化法案3.0,加速新藥開發之動物實驗新替代方法發展

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國前任總統拜登於2022年底簽署《FDA現代化法2.0》(FDA Modernization Act 2.0, FDAMA 2.0),修改FDA自1938年以來新藥必須實施動物試驗之要求,將進入人體臨床試驗之前階段試驗改稱為「非臨床試驗(nonclinical test)」並許可採取非動物實驗方法,為美國在藥物安全監管方面的重大改變。 在FDAMA 2.0通過後,FDA仍未啟動修改監管法規以符合該法,為了確保改革能加速進行,2024年2月6日美國兩黨參議員合作提出《FDA現代化法案3.0》(FDAMA 3.0) 草案並於同年12月12日參議院無異議通過,惟眾議院在第118屆國會結束前並未討論該案,參議員於2025年2月第119屆國會重新提出該法案。 FDAMA 3.0重點包括: 1. 一般規定:FDA應於1年內,建立針對藥品的非臨床測試方法資格認定流程(Nonclinical Testing Methods Qualification Process);個人可申請特定用途的非臨床測試方法資格認定。 2. 符合資格之非臨床測試方法:非臨床測試方法必須可替代或減少動物測試;且提高非臨床測試對安全性和有效性的預測性,或縮短藥物(含生物製品)的開發時間。 3. 符合資格認定之應用:獲資格認定之非臨床測試方法,FDA應加速相關藥品申請(包括變更申請)的審核流程;允許申請人於藥品申請中引用相關數據與資訊。 4. 本法生效日起兩年內應每年向國會報告流程運行情形,包括已認定的方法類型、申請數量、審查天數、批准數量,以及該流程減少的動物數量估算等。 目前雖然其他國家尚未有類似立法,但歐美均投入大量研發資源減少動物實驗,且FDA亦於近日提出《減少臨床前安全試驗使用動物實驗之路線圖》,後續應密切關注本法案是否通過及相關產業影響。

巴西通過290號規範性指令,促進已獲外國監管機構註冊之醫療器材於國內快速上市

巴西國家衛生監督局(Agência Nacional de Vigilância Sanitária, Anvisa)為強化國際監管機構間信任,並促進具有臨床效益的健康產品快速流通,於2022年8月通過第741號合議理事會決議(Resolução da Diretoria Colegiada - RDC N° 741),宣布若已透過等效外國監管機構(Autoridade Reguladora Estrangeira Equivalente, AREE)–即具有與 Anvisa一致之監管方式的外國監管機構–認定符合公認之品質、安全性和有效性標準之醫療產品,可利用AREE的註冊或授權證明相關文件,於巴西當地申請上市註冊的過程中,獲得簡化審查的優惠措施。在此框架下,Anvisa於2024年4月4日通過第290號規範性指令 (Instrução Normativa - N° 290),內文指出醫療器材及體外診斷醫材產品可於2024年6月3日起,於註冊上市的過程中提交AREE之證明文件以進入簡審程序。 第290號規範性指令明確指出,目前獲巴西政府認可之醫療器材AREE及對應之註冊或授權證明,包含以下機構:(1)美國食品及藥物管理局(U.S. Food and Drug Administration, FDA)之上市前批准(PMA)、510(k)或De Novo;(2)加拿大衛生部(Health Canada, HC) 之醫療器材許可證;(3)澳洲醫療用品管理局(Therapeutic Goods Administration, TGA)之澳洲治療用品登記冊 ;(4)日本厚生勞動省(Ministry of Health, Labour and Welfare, MHLW)之上市前批准。另外,欲適用簡化程序的註冊產品,則需與AREE頒發授權證明之產品具有「本質上相同性」(Dispositivo Médico Essencialmente Idêntico),具體包含產品之技術規格、適應症、預期用途、製造商、製造流程,以及安全與性能上的一致性。 此政策透過值得信賴的監管單位把關,不僅可促進國際間醫療器材之貿易流通,更可能有效減少巴西當局於審查過程的行政成本,進而提升國內的產品審查效率。然值得注意的是,在各國醫療器材監管法規與行政裁量基準不完全一致的現況下,各國政府對於醫療器材之分類、臨床數據及健康風險的解釋與判斷結果也不見得相同,Avisa未來在醫療器材上市審核的過程中,將如何看待及利用來自AREE之證明文件,有待未來持續觀察其實施成效。

OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。

TOP