韓國「2021年經濟政策」

  韓國財政經濟部(Ministry of Economy and Finance)於2020年12月17日發布「2021年經濟政策」(2021 Economic Policies)。2021年經濟政策中包含兩大重點,分別為因應新型冠狀病毒影響下的不確定性,盡快恢復經濟成長動能,以及推動產業創新與結構轉型,以培植未來的經濟成長動力。政策文件中指出,儘管2020年經濟成長率因疫情影響而表現低迷,但仍期許2021年經濟能夠盡快好轉,改善投資、出口與國內就業。

  針對如何盡快恢復經濟成長動能議題,政策文件指出首先應處理因疫情帶來的不確定性,除了維持擴張性財政政策,以增加政府支出刺激總體需求外,在經濟成長與疫情防治間應取得平衡並加強風險管理;其次為透過租稅減免促進消費、擴大投資額度與提供出口融資,以及提供資金以扶植中小企業、提供優惠貸款協助大型企業度過疫情難關、鬆綁法規以發展地方經濟等一連串措施,來達到恢復經濟成長動能的目標。

  而在推動產業創新與結構轉型上,將持續投資於5G應用與6G技術的發展上,推動數位經濟與數位政府系統建構,具體措施包含減免投資5G應用貸款稅率2%、籌集投資數位新政基金、完善智慧醫療應用等。此外在扶植新創政策上,則包含建立新興科技實驗場域(K-test bed),以政府採購扶植新興科技、提供商機以及協助銜接海外市場,修正創投法規開放附認股權憑證之低利貸款以引進矽谷創投資金,以及排除可轉換可贖回之債務認定以降低政府研發補助申請門檻等,以有效扶植創新能量成為未來的經濟成長動力。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 韓國「2021年經濟政策」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8601&no=66&tp=1 (最後瀏覽日:2025/07/05)
引註此篇文章
你可能還會想看
日本公平交易委員會就反托拉斯法下之智慧財產權之利用指南為部分修正

  於2016年1月21日,日本公平交易委員會(Japan Fair Trade Commission,下稱JFTC)公布了修正後的「反托拉斯法下之智慧財產權之利用指南(Guidelines for the Use of Intellectual Property under the Antimonopoly Act)」,就有關標準必要專利權利行使有無違反反托拉斯法之相關問題進一步為解釋,俾利往後企業為商業行為時之參考。以下為其修正概要:一、當標準必要專利權人同意依據FRAND原則授權時,其若再提出訴訟要求排除有意願取得授權者(willing licensee)為該標準必要專利權之利用或是拒絕授權與有意願取得授權者時,該行為會被認定違反反托拉斯法。二、基於一般商業行為所為並善意進行商業談判者,會被認定屬有意願取得授權者(willing licensee),不論其之後是否就該專利有效性為爭執,或是對該專利是否屬實質必要專利為爭執。三、阻止他公司運用該專利進行研究、發展或販賣產品會被認定為不正商業行為,不論該行為是否在商品市場上產生限制競爭或獨占之結果。   JFTC為了釐清行使智慧財產權時所可能面臨是否違反反托拉斯法之相關問題,於西元(下同)2007年9月8日發布「反托拉斯法下之智慧財產權之利用指南(Guidelines for the Use of Intellectual Property under the Antimonopoly Act)」與「標準化與專利池協定指南(Guidelines on Standardization and Patent Pool Arrangements)」。標準必要專利(SEP)之相關爭議原則需依這些指南為判定,但這些指南對於一些表面上屬於權利行使(例如:標準必要專利之權利人所提起之侵權訴訟)的行為定性所提供的解釋卻十分有限。因此JFTC決定修改專利指南,並且公布草案予各方利害關係人表示意見,此乃JFTC於斟酌所得之各方意見後,所為之修正。

FDA發佈人工智慧/機器學習行動計畫

  美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。   2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。   根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。

歐盟執委會同意德國全面開放寬頻市場

  在歐盟公布電子通訊網路的規範架構後,德國電信主管機關聯邦網路局Bundesnetzagentur(BNetzA)於2005 年10月11日提出寬頻接取批發市場的規劃草案,提案內容包含顯著市場力量(SMP)及寬頻網路市場的定義,不過卻將超高速網路接取(very high-speed internet access)排除在寬頻接取市場的定義之外,由於此將涉及德國在流量接取(bitstream)及寬頻接取市場的有效競爭,以及有可能影響具有顯著市場力量的德國電信公司(Deutsche Telekom)與後進電信業者建置VDSL基礎設施或提供寬頻多媒體服務的意願。因此此項草案在送交資訊社會媒體執委會後,引發了諸多爭論。多數委員認為如未將VDSL列入寬頻接取批發市場的定義中,將會導致其他業者無法以同一立足點與德國電信競爭。在BnetzA將VDSL列入市場定義,並允以流量作為批售基礎而重提規劃案後,歐盟執委會於2005年12月23日通過決議,同意德國的電信主管機關聯邦網路局Bundesnetzagentur(BNetzA)全面開放含VDSL在內的高速寬頻網路市場。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP