美國聯邦航空總署公布《無人機遠端識別最終規則》

  美國聯邦航空總署(Federal Aviation Administraiton, FAA)於2020年12月28日公布「無人機遠端識別最終規則(Final Rule on Remote Identification of Unmanned Aircraft)」,針對250克以上無人機的遠端身分識別操作規則進行規範:

(1)標準配備有遠端識別的無人機:

  無人機需透過wifi或藍芽等技術廣播(broadcast)其遠端識別資訊,包含無人機ID,即無人機序號(serial number)或交談識別碼(session ID);無人機的速度、經緯度和海拔高度;控制站的經緯度和海拔高度;緊急狀況的狀態和時間戳記(time mark)。該規則要求無人機廣播範圍內大多數的個人無線裝置(wireless device)都可取得無人機的遠端識別訊息,但序號、交談識別碼以及註冊資料庫僅限FAA和被授權人員可於特定情況下取得。

(2)額外加裝遠端識別廣播模組的無人機:

  廣播模組可能為與無人機連線的獨立裝置,或以加裝於無人機內部的形式存在,此類無人機必須於視距內操作,並透過wifi或藍芽等技術廣播其遠端識別資訊,包含模組的序號;無人機的速度、經緯度和海拔高度;起飛地點的經緯度、海拔高度和時間戳記。

(3)於FAA認可之識別區域(FAA-Recognized Identification Areas, FRIA)中飛行:

  在FRIA區域中,無人機可不具備遠端識別飛行,但無人機操作需處於視距內與FRIA區域界線內。

  該最終規則已送至美國聯邦公報辦公室(Office of the Federal Register),且會在公告後60天生效,預計於2021年1月公告。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 美國聯邦航空總署公布《無人機遠端識別最終規則》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8605&no=57&tp=5 (最後瀏覽日:2026/02/01)
引註此篇文章
你可能還會想看
歐盟傳統作物與基因改造農作物之共存門檻制度受到歐洲法院的挑戰

  歐洲法院(European Court of Justice)於2011年9月6日作出一項指標性的判決,係針對蜂蜜或食物補充品(Food Supplement)中,若其花粉成分受到基因改造作物之污染,則無論該污染是有意或無意所造成者,未經審核前均不得任意販售。據此,蜂蜜或食物補充品的生產者得就因不得販售所產生之損失向污染源或政府求償。   該案原為德國的養蜂人認為其生產之蜂蜜中的花粉受到鄰近距離五百公尺的基因改造農作物試驗之污染,而該試驗即為巴伐利亞政府所核准之基因改造農作物試驗(1998年EU核准的MON 801 maize),故而對巴伐利亞政府提出求償。原德國法院在不能確定蜂蜜是否涵蓋在基因改造規範的情況下,轉而尋求歐洲法院的判決。   該判決等於是挑戰歐盟現有的對於傳統作物及基因改造作物共存的政策與法規(GMO, Co-Existence),歐盟就該共存的門檻標準設定在0.9%,若產品含基因改造成分0.9%以上,需標示為基因改造產品,惟標示為基因改造食品對於傳統農作物之種植可能帶來銷售上的不利。而在共存門檻之下,含有基因改造成分的傳統農作物還是有可能因含有基因改造的成分而影響銷售並帶來損失;又因在共存門檻之下,作物含有基因改造成分是無法向政府或是來源求償的。另一方面,該判決亦影響出口蜂蜜至歐盟的國家,如大量生產蜂蜜且核准種植基因改造作物的阿根廷等國家。   對於基因改造食品採取保守態度的歐盟,近年來有意將是否禁止基因改造農作物以及共存門檻的比率下放給成員國自行決定,在成員國間形成兩極化的意見,而該項提案目前雖已經歐盟議會背書,但尚未由各成員國通過。這樣的判決令共存門檻的制度形同具文,且可能會使更多國家傾向禁止種植基因改造農作物,而不利於基因改造科技的研發。

微軟向美國專利商標局(USPTO)提出可用以追蹤物體的擴增實境(AR)專利申請

  依據12月USPTO公開資訊,微軟(Microsoft)於2016年9月2號提出擴增實境(Augmented Reality,以下簡稱AR)系統之美國發明專利申請(申請號:20160373570)。目前AR系統不僅可投射虛擬訊息,還可偵測物理空間之物體位置,不過因為現實生活中,不管是有生命或無生命物體,都不太可能處於完全靜態不動的狀況;而微軟此技術之開發,除了不限於固定空間外,對移動中的物體更具有自動追蹤效果。   微軟專利指出該系統能辨識無生命物體,並可將該物體被選擇為追蹤對象的技術,這個AR系統可持續監測物體的狀態,不僅在同一空間中不同時間點,甚至是物體離開監控空間又被帶回的情況都可追蹤。從微軟專利可以看到這項技術運用在日常生活的價值,如:我們常常花很多時間在想汽車鑰匙和錢包放在哪裡,但透過這個系統的追蹤,可以節省我們找尋的時間;有時我們會忘記家裡的牛奶還剩多少,而花時間去逛超商,倘若我們運用此追蹤技術,能夠隨時知道牛奶剩餘的狀態,就可以避免這種情況的發生。   上開技術不僅包含AR技術,還有虛擬實境(Virtual Reality,簡稱VR)技術,這些技術能透過虛擬與真實世界合併,將真實世界、人類、空間和物體結合,並可進一步的智慧化追蹤,若這項專利被核准且可真實運用到現實生活,必能減少我們的生活中不必要的麻煩。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

加拿大公布新的企業個資保護自評工具

  加拿大聯邦政府與亞伯達省(Alberta)及英屬哥倫比亞省(British Columbia)的隱私委員會針對一般企業,聯合推出新的個人資料保護自我評量線上工具,該線上工具之內容包括風險管理、政策、記錄管理、人力資源安全、物理安全、系統安全、網路安全、無線、資料庫安全、作業系統、電子郵件和傳真安全、資料完整性和保護、存取控制、信息系統獲取,開發和維護、事件管理、業務連續性規劃、承諾等項目之評估測驗。   聯合制定該線上自我評量工具的隱私委員辦公室表示,該線上工具可用於任何私人組織,特別是小型及中小型企業,而且新的線上工具是針對企業為一全面性的評估,並且該評估的內容十分鉅細靡遺。另外,為了提供使用者於使用該線上工具時的靈活性,故使用者亦可以將重點放在最切合自己的企業的部分,亦即僅選擇其中一項或數項為自我評估的內容即可。   又,該線上自我評量工具會將使用者的自我評估和分析過程的結果做成結論,而使用者可以獲得該分析得出之結論,並將作成之結論用來有系統地為評估組織本身的個人資料保護安全性,並藉以提高個人資料保護的安全。

TOP