歐盟理事會修正《第428/2009號歐盟理事會規章》,提升歐洲軍民兩用出口管制力度

  歐盟理事會與歐洲議會於2020年12月14日,針對歐洲軍民兩用出口管制法規《第428/2009號歐盟理事會規章》(COUNCIL REGULATION (EC) No 428/2009)達成修正協議,並獲得歐盟理事會下設常駐代表委員會(Committee of Permanent Representatives, COREPER)認可後正式通過。《規章428/2009》用以規範歐盟軍民兩用出口管制,監管歐盟涉及「軍民兩用」敏感貨品、服務、軟體和技術的對外出口、內部轉口及過境貿易。因兩用貨品包含軍事用途及商用用途,故此次歐盟調整軍民兩用出口管制的相關規則,主要考量面向包括:英國脫歐對歐洲出口管制的影響;如何確保歐盟出口管制條例與國際反武器擴散制度相一致;以及解決網路監管和新興技術帶來的安全威脅等。本次歐洲軍民兩用出口管制修正重點如下:

  1. 提升出口管制力度,防止濫用網路監管等新興技術:管制項目具備監視、取得、蒐集或分析資通訊系統資料功能者,因涉及國家內部鎮壓或嚴重違反國際人權和國際人道法(International Humanitarian Law),即使未明列在歐盟軍民兩用法規的附件中,也應加強管制。
  2. 新增兩項歐盟一般出口許可證(EU General Export Authorisations, EU GEAs):包括集團內部技術轉讓(EU007)及加密(EU008),允許軍民兩用貨品出口至特定目的地。
  3. 統一歐盟軍民兩用貨品規則:例如技術協助屬於特定軍事用途且與軍民兩用相關者須經授權,歐盟成員國得配合擴張軍民兩用貨品清單。
  4. 強化企業調查和報告義務,遵守並適用出口管制規則:實施出口及授權作業的出口商,應落實內部合規計劃,確保企業遵守出口管制的政策和程序。
  5. 歐盟成員國間加強合作機制:促進資訊交流、政策調整和執法行動。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 歐盟理事會修正《第428/2009號歐盟理事會規章》,提升歐洲軍民兩用出口管制力度, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8606&no=57&tp=5 (最後瀏覽日:2025/12/26)
引註此篇文章
你可能還會想看
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

美國制訂「促進政府資訊開放」行政命令及推動「藍色按鈕倡議」計畫

  美國歐巴馬總統於2013年5月9日正式簽署「促進政府資訊開放並利機器讀取」行政命令(Executive Order 13642–Making Open and Machine Readable the New Defaut for Government Information),推崇聯邦政府過去釋出氣候、全球定位系統(GPS)等資訊對於私部門產業創新及新創事業(entrepreneurship and star-up)之正面影響,盼未來所有新增加的政府資料在資訊安全和隱私權雙重確保之前提下,將開放以可供機器可讀取之格式給公共大眾,帶動整體經濟正面循環發展。之前,美國推動聯邦政府資料開放政策,重要者為白宮科學技術政策辦公室(Office of Science and Technology Policy, OSTP)於2009年3月份啟動「開放政府倡議」(Open Government Initiative),民眾可透過「Data.gov」入口網站 ,取得高價值、機器可讀取之聯邦政府資料。   近年來,在公部門政府政策鼓勵導引下,不同的產業也逐漸發展出適用於特定產業的共同互通性標準(sectoral interoparability)。以醫療衛生領域為例,從2010年開始,歐巴馬總統乃宣布「藍色按鈕倡議」(Blue Button Initiative),病患得透過特定網頁(web-based)簡易下載其健康資訊(health information),並可供重複利用的格式下;同時,患者也可以選擇將該資訊分享給健康照護提供者(health care provider)、保險公司和信任的第三者(trusted third parties)。該倡議更挑戰軟體開發者(developer)在藍色按鈕的基礎上,開發更多的Apps軟體,使當事人更容易去管理掌控自身健康的狀況。在能源科技領域,近似於藍色按鈕倡議,白宮幕僚科技長Aneesh Chopra於2011年9月,也發起了「綠色按鈕倡議」(green button initaitive),挑戰美國境內大小事業單位(utilities)投入參與該倡議,研發一個機器可讀取之開放格式(a machine-readable open format),使消費者得透過連線網路重複近取之。   有鑒於網際網路開放的特性,且近年來來自外國網路攻擊不斷,於2013年2月份,NIST與國際間重要標準組織,如ISO、IEC和IEEE,首度就感應網絡(sensor networks)、機器對機器(M2M)和智慧聯網(IoT),提出一個跨界面之共通標準計畫(ISO/IEC/IEEE P21451-1-4 XMPP),該共通標準計畫內容包含: 封包傳輸(檢測)、全球獨特辨識、政策控制和加密,此共通標準得確保未來巨量資料領域資料近取之安全性 。

美國最高法院在電影蠻牛案中釐清權利行使怠惰原則之適用

  美國最高法於近日判決電影編劇Frank Petrella之女得對電影公司MGM對其父親於1963年以世界中量級拳王Jake LaMotta生平創作的劇本蠻牛(Raging Bull)持續性的商業利用行為提出侵權訴訟。   本案緣起於在美國著作權法下,1978年以前發表的著作受到28年的著作權保護,並得於到期後延展保護67年,而若作者在延展之前死亡亦即本案情形,著作受讓人僅得於繼承人移轉延展權的情況下繼續使用,而著作權法507(b)規定民事賠償請求需於侵權行為發生後的三年內提出。   原告編劇Frank Petrella之女於2009年向MGM提出2006年後侵權行為之賠償,MGM則以法律不保護權利怠於行使之人(thedoctrine of laches)作為抗辯,主張原告不得起訴。地方法院及第九巡迴上訴法院皆贊同被告MGM之主張,認為原告於1991年延展著作權保護時即知悉,此舉對MGM並不合理且帶有偏見。   最高法院近日推翻下級法院的看法,認為權利行使怠惰並不阻卻權利人對請求權時效內發生的侵權行為提出訴訟,同時更進一步釐清著作權法507(b)允許權利人評估值得尋求訴訟救濟的時間點,除非權利人刻意誤導第三人不會對其起訴,而這是禁反言原則(thedoctrine of estoppel)的問題,本案下級法院顯然混淆了二者之區別,從而肯定原告有權向MGM請求著作權侵害之損害賠償。

TOP