美國專利商標局(USPTO)於2021年1月13日發布「中國大陸商標與專利:非市場因素對申請趨勢與智財體系之影響」(Trademarks and Patents in China: The Impact of Non-Market Factors on Filing Trends and IP Systems)研究報告,指出中國大陸近年來急遽增加的專利與商標申請案件數,從申請海外專利保護比率低、專利發明商業化比率低以及惡意(bad-faith)或詐欺性(fraudulent)商標申請案件比率高等現象觀察,申請案件數的爆量很有可能源自政府補貼或其他非市場因素的影響。
USPTO指出,中國大陸在2019年的專利與商標申請案件數均達到歷史新高,包含商標案件數達780萬件、發明專利申請案件數達150萬件,已經接近全球申請案件數的一半,也引起國際的關注。有別於其他國家因創新活動熱絡所帶動的專利及商標申請案件量增長,中國大陸在2020年世界智財組織(WIPO)所統計的智財授權比率僅排名第44,顯示中國大陸在智財商業化比率極低,其專利與商標申請案件數的暴增可能源於其他非市場因素。
USPTO指出,政府補貼可能是刺激商標與專利申請案件數增長的最大原因,由於中國大陸中央與地方政府持續推動商標補貼措施,補貼金額通常高於商標註冊費用,進而引導人民大量註冊非為商業使用之商標,在專利申請上也有類似的情況,中國大陸政府推動超過195個專利補貼措施,創造了以申請專利賺取補貼的誘因。這些非市場因素的商標及專利申請案件,除了可能誤導對於中國大陸創新能力的評估外,也正在破壞保護真正創新活動的能量。
本文為「經濟部產業技術司科技專案成果」
歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
歐盟公布人工智慧白皮書歐盟執委會於2020年2月19日發表《人工智慧白皮書》(White Paper On Artificial Intelligence-A European approach to excellence and trust)指出未來將以「監管」與「投資」兩者並重,促進人工智慧之應用並同時解決該項技術帶來之風險。 在投資方面,白皮書提及歐洲需要大幅提高人工智慧研究和創新領域之投資,目標是未來10年中,每年在歐盟吸引超過200億歐元關於人工智慧技術研發和應用資金;並透過頂尖大學和高等教育機構吸引最優秀的教授和科學家,並在人工智慧領域提供世界領先的教育課程。 而在監管方面,白皮書提到將以2019年4月發布之《可信賴之人工智慧倫理準則》所提出之七項關鍵要求為基礎,未來將制定明確之歐洲監管框架。在監管框架下,應包括下列幾個重點:1.有效實施與執行現有歐盟和國家法規,例如現行法規有關責任歸屬之規範可能需要進一步釐清;2.釐清現行歐盟法規之限制,例如現行歐盟產品安全法規原則上不適用於「服務」或是是否涵蓋獨立運作之軟體(stand-alone software)有待釐清;3.應可更改人工智慧系統之功能,人工智慧技術需要頻繁更新軟體,針對此類風險,應制定可針對此類產品在生命週期內修改功能之規範;4.有效分配不同利害關係者間之責任,目前產品責任偏向生產者負責,而未來可能須由非生產者共同分配責任;5.掌握人工智慧帶來的新興風險,並因應風險所帶來之變化。同時,白皮書也提出高風險人工智慧應用程式的判斷標準與監管重點,認為未來應根據風險來進行不同程度之監管。執委會並透過網站向公眾徵求針對《人工智慧白皮書》所提出建議之諮詢意見,截止日期為2020年5月19日。
何謂「工業4.0」?所謂工業4.0(Industrie 4.0)乃係將產品用最先進的資訊和通訊技術緊密結合。其發展背後的原動力是快速增長的經濟和社會的數位化。在德國,它不斷地在改變未來產品的生產及加工方式:自蒸汽機、生產線、電子和電腦技術之後,現在確認了「智慧工廠」(Smart Factories)乃是第四次工業革命。 德國「工業4.0」一詞源於2011年德國教育與研究部(BMBF)在其高科技策略(Hightech-Strategie)下的研發計畫。而如何落實工業4.0,則可從德國科學技術院(Deutsche Akademie der Technikwissenschaften, acatech) 與德國高科技策略之研究聯盟顧問委員會(Forschungsunion, Wirtschaft und Wissenschaft begleiten die Hightech-Strategie)共同提出之「工業4.0:實踐建議報告書」 (Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0)窺見整體計畫。 它的技術基礎是資訊科技、數位化的網路系統,藉由該系統,可以實現超強的自行組織運作的生產流程:人、機器、設備、物流和產品在工業4.0中,得以在同一個平台上相互溝通協作。不同企業間的生產及運送過程可以更聰明地以資訊科技技術相互地溝通,更為有效和彈性地生產。 如此一來將有助於產生智慧型新創價值的供應鏈,其囊括產品生命週期的各階段-從開發、生產、應用和維修一直到回收產品階段。藉此,一方面相關的服務可從客戶對產品想法一直到產品的回收都包括在內。因此,企業能夠更容易地根據個別客戶的要求生產定制產品。客製化的產品生產和維修可能會成為新的標準。另一方面,雖然是生產個性化商品但生產成本仍可以降低。藉由新創價值供應鏈相關企業的相互串聯,使產品不再只是各個流程得以優化,而係整體的創新價值鍊的整體最適化。如果所有資訊都能即時提供,一個公司可以儘早快速回應的某些原材料的短缺,生產過程可以跨企業地調整控制,使其更節省原料和能源。總體而言,生產效率能夠提高,加強企業的競爭力和提高生產彈性。
全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。