今(2021)年一月中旬在美國總統就職典禮中,由法新社(Agence France-Presse, AFP)攝影記者Brendan Smialowski捕捉到參議員桑德斯(Senator Bernie Sanders)戴著連指手套、雙手環胸在場邊靜候的攝影作品,意外受到網友關注並製作成各式梗圖迷因(meme) 而爆紅。然而,在這些成千上萬的梗圖創作中,除非獲得原創作者的允許或落在著作權法的合理使用範圍,否則皆潛在隱藏了著作權侵權之可能性。
檢視本事件,將該攝影著作去背以取得「寧靜而坐的桑德斯圖像」,而將該去背圖像合成於各式情境場景,甚至架設梗圖產生器網站供其他網友上傳照片以製作更多衍生梗圖。多數在網路上分享之創意梗圖為博取網友一笑為目的,尚屬於著作權合理使用之範圍,然而當藉由該去背圖像或衍生梗圖進行廣告或促銷之用途,如將該去背圖像或衍生梗圖成為商品行銷元素、多次使用於廠商的社群媒體貼文中,將可能落入商業使用之爭議。桑德斯本人便將該去背圖像製作成運動衫進行慈善募款,儘管所得為慈善用途,但仍屬於商業使用;此外,該去背圖像未將原創進行任何轉化而直接轉印在衣服上,亦無法主張合理使用。儘管存有侵權疑慮,現階段攝影師似乎樂見其攝影作品成為各式梗圖而瘋傳,不過當開始有人藉由其攝影著作賺取金錢,情境可能就有所不同,攝影師將可能進行追究。
回顧過去類似將網路梗圖迷因進行商業使用,而產生著作權侵權爭議之案件。早如2009年美聯社(Associated Press)記者所拍攝前美國總統歐巴馬競選活動之肖像特寫,遭到前衛街頭塗鴉藝術家費爾雷(Shepard Fairey)在未經授權使用之前提下,將該攝影著作改作名為《希望(Hope)》之海報與各式商品並進行販售,美聯社因而對費爾雷提出侵權訴訟,儘管最後雙方和解,但兩者在過程中皆投入不少訴訟資源。其他案例如2019年體育流行文化媒體Barstool Sports與社群媒體Jerry Media等,皆因藉由擷取網路梗圖吸引網路社群觸及以進行消費等商業行為,遭到原創者檢舉而被迫刪除歷年貼文。
「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
日本外包法,正式名稱為外包價金給付遲延等防止法(下請代金支払遅延等防止法,又簡稱下請法),其制定目的在於確保大型企業外包其業務予中小型企業時之交易公正性,防止外包業者濫用其相對於承包業者之優勢地位,並保護承包之小型業者的利益,而該法的主管機關為公平交易委員會(公正取引委員会)。 依該法規定,於以下情形有本法之適用:(1)業者發包委託承包業者製造、修理物品與委託承包商提供該法授權行政命令訂定列舉的資訊成果產品(製作程式)或服務(運送、將貨品保管在倉庫、資訊處理),且發包之大型企業資本額 3億日圓以上、承包之小型企業資本額3億日圓以下,或發包企業資本額於3億元以下1000萬日圓以上、承包企業資本額在1000萬日圓以下時;或(2)業者發包委託承包業者作成非屬上述行政命令所列舉之資訊成果產品(如製作電視節目或廣告、設計商品、產品之使用說明書等)、或提供非屬行政命令列舉之服務(如維修建物或機械、提供客服中心服務等),且發包業者資本額5000萬日圓以上、承包業者資本額在5000萬日圓以下,或發包業者資本額在5000萬日圓以下1000萬日圓以上、承包業者資本額於1000萬日圓以下。 符合上開法定要件時,發包業者應訂定契約價金之給付期日,不得遲延給付價金,若給付遲延則有義務支付遲延之利息等,同時禁止發包業者拒絕受領承包業者交付的履約標的,禁止無故減少契約價金、退貨、或對承包業者採取報復性措施。若發包業者違反上述規定,則由日本中小企業廳或該發包業者之事業主管機關請求日本公平交易委員會(公正取引委員会)採取相應措施,該會則得據此針對該違反行為向發包業者作出書面勸告,同時對外公開該發包業者之公司名稱、其違反行為之事實概要、以及勸告內容的概要。此外,為防止口頭約定造成日後衍生交易糾紛,發包業者於下單時,應以書面明確約定並記載例如承包業者的履約標的、契約價金數額等法定應記載事項,並在下單後立即交付該書面予承包業者,如違反,得對該發包業者課予50萬日圓以下罰金。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
電信產業號碼資料庫之應用與法制議題-以個人隱私保護為中心 性隱私內容外流風波-從美國立法例論我國違反本人意願散布性隱私內容之入罪化