FDA發佈人工智慧/機器學習行動計畫

  美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。

  2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。

  根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。

相關連結
※ FDA發佈人工智慧/機器學習行動計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8628&no=57&tp=1 (最後瀏覽日:2026/02/20)
引註此篇文章
你可能還會想看
肯塔基州上訴法院認為,未經當事人同意即使用臉書上之tag功能標示出該當事人,並無違法

  美國肯塔基州上訴法院於月前駁回一名女子所提出的監護權認定案的上訴。該女子之上訴理由中提到:法院所據以決定監護權之證據之一,乃是未經她同意即被其他人標示出該女子姓名,並放在臉書(Facebook)上供人點閱、瀏覽的照片。但該州上訴法院並不同意這個看法,其在判決中指出:目前並無任何法律要求他人必須先取得該女子之同意後才能對之攝相,並上傳至臉書或其他網站;此外亦無任何法律規定其他人不得將該女子之姓名標示(tag)於這些照片上。   暫撇開其他法律不談,此一案件引人思考之與個人資料保護相關之處至少有二:首先,是關於法律適用的部分,亦即,如本案發生在日後個人資料保護法開始施行後的台灣,則該法第51條第1項(註1)之排除規定是否適用的問題;其二則是法律政策的部分,究竟在這個資訊數位化且易於搜尋的網路時代,為個人或家庭活動目的而毫無設限(例如本案之供不特定人瀏覽)的利用他人之個人資料是否確無為保護個人資料為著眼點之規範必要?(在肯塔基州這個案子裡,此一「無規範」的結果或許是正面的,但在其他的許多狀況,可能並非如此。)   註1:個人資料保護法第51條第1項:「有下列情形之一者,不適用本法規定:一、自然人為單純個人或家庭活動之目的,而蒐集、處理或利用個人資料。二、於公開場所或公開活動中所蒐集、處理或利用之未與其他個人資料結合之影音資料。」

日本修訂《建築節能法》,加強住宅、建築物之節能措施

  日本政府為實現2050淨零碳排目標,內閣於2022年4月22日公布《建築物のエネルギー消費性能の向上に関する法律》(譯:有關建築物能源使用效率提升的法律,下稱本法)修正案,加強住宅、建築物之能效提升措施。本次修正內容,主要包含: 擴大本法適用對象 因本法現僅規範大型規模建物(面積2,000平方公尺以上)及中型規模建物(面積300平方公尺以上,未滿2,000平方公尺);故修正案定2025年起,將所有新建的小型規模建築(面積未滿300平方公尺)及住宅均納入本法規定,不僅要求外牆和屋頂需增厚隔熱材質,並應使用高能效的空調及照明設備,以符節能標準。 擴大領先者計畫(Top Runner program) 以淨零耗能住宅(Zero Energy House, ZEH)及零耗能建築(Zero Energy Building, ZEB)為目標,最遲到2030年逐步提高實施節能標準。 實施節能裝修融資政策 國土交通省為促進既有建築物節能改造及鼓勵引進太陽能發電的新機制,將由住宅局編列預算,透過日本住宅金融支援機構(Japan Housing Finance Agency, JHF)辦理節能裝修低利息融資。

OECD發布「促進人工智慧風險管理互通性的通用指引」研究報告

經濟合作發展組織(Organisation for Economic Co-operation and Development,下稱OECD)於2023年11月公布「促進AI風險管理互通性的通用指引」(Common Guideposts To Promote Interoperability In AI Risk Management)研究報告(下稱「報告」),為2023年2月「高階AI風險管理互通框架」(High-Level AI Risk Management Interoperability Framework,下稱「互通框架」)之延伸研究。 報告中主要說明「互通框架」的四個主要步驟,並與國際主要AI風險管理框架和標準的風險管理流程進行比較分析。首先,「互通框架」的四個步驟分別為: 1. 「定義」AI風險管理範圍、環境脈絡與標準; 2. 「評估」風險的可能性與危害程度; 3. 「處理」風險,以停止、減輕或預防傷害; 4.「治理」風險管理流程,包括透過持續的監督、審查、記錄、溝通與諮詢、各參與者的角色和責任分配、建立問責制等作法,打造組織內部的風險管理文化。 其次,本報告指出,目前國際主要AI風險管理框架大致上與OECD「互通框架」的四個主要步驟一致,然因涵蓋範圍有別,框架間難免存在差異,最大差異在於「治理」功能融入框架結構的設計、其細項功能、以及術語等方面,惟此些差異並不影響各框架與OECD「互通框架」的一致性。 未來OECD也將基於上述研究,建立AI風險管理的線上互動工具,用以協助各界比較各種AI風險管理框架,並瀏覽多種風險管理的落實方法、工具和實踐方式。OECD的努力或許能促進全球AI治理的一致性,進而減輕企業的合規負擔,其後續發展值得持續追蹤觀察。

德國「真實實驗室」

  德國政府意識到伴隨數位化發展的創新科技和商業模式雖然提供了許多機會,但往往容易對消費者、產業和社會產生顛覆性影響,此類影響通常難以在短期內權衡利弊,從而不易對其訂出具體合適的規範,例如德國新創公司Lilium、奧迪子公司Italdesign、以及歐洲航空巨擘Airbus都有意發展的空中計程車計畫,雖有無限想像空間,但卻很難在短期內評估出可能隨之而來的安全、(空氣或噪音)汙染、就業等方面的不利影響,進而制定出寬嚴適中的規範。有鑑於此,德國聯邦經濟及能源部(Bundesministerium für Wirtschaft und Energie, BMWi)於2018年12月10日提出「真實實驗室戰略」(Reallabore Strategie),旨在營造一個前瞻、靈活、可支持創新想法自由發揮的法規環境,同時也希望藉由在真實實驗室運作所得之經驗數據,了解創新的機會和風險,進而找到正確的監管答案。   「真實實驗室」(Reallabore)係指允許在特定時間及真實環境範圍內,進行創新科技與商業模式發展測試,而無需擔心與現行監管規範有所牴觸的創新試驗制度,其與「生活實驗室」(Living Labs)和「實驗場域」(Experimentierräume)、「沙盒」(Sandbox)、「領航計畫」(Pilot Project)等概念類似,與我國「金融科技創新實驗」及「無人載具科技創新實驗」之制度規範亦有異曲同工之趣,但更著重在探索未來的監管方向,簡而言之,「真實實驗室」就是一個創新想法與監管規範的試驗空間,德國聯邦經濟及能源部(BMWi)為具體傳達其概念,對其特徵作了如下描述:(1)可以進行數位創新試驗的特定時空環境(2)可以支持創新想法自由發揮的法規環境(3)可以從中進行監管學習並確定未來監管方向與具體細節。

TOP