FDA發佈人工智慧/機器學習行動計畫

  美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。

  2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。

  根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。

相關連結
※ FDA發佈人工智慧/機器學習行動計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8628&no=57&tp=1 (最後瀏覽日:2026/01/29)
引註此篇文章
你可能還會想看
英國預計在2025年通過《網路安全與韌性法案》,提升網路和關鍵基礎設施的安全與韌性

英國工黨政府在2024年7月17日的議會開幕致詞上宣布,將於2025年提出「網路安全與韌性法案」(Cyber Security and Resilience Bill),用以更新現有的網路與資訊系統規則(The Network and Information Systems Regulations 2018)。現有的法規涵蓋5大行業領域:交通運輸、能源、飲水、健康衛生,以及數位基礎設施和部分數位服務(含網路市集、網路搜尋引擎、雲端運算服務等),分別由12個主管機關負責在各自領域落實該法規。 根據英國國家網路安全中心的評估,英國正面臨著來自敵意國家(或受其資助的行為人)日益增加的威脅。而英國的基礎設施在運作時不應該忽視這些威脅。工黨政府希望加強英國的網路防禦和面臨惡意攻擊時的網路韌性,從而確保英國社會所依賴的基礎設施和關鍵服務能夠持續運作,並確保數位經濟能夠持續增長。 根據目前公布的資訊,該法案將會在既有框架下面針對三個方向進行強化: 1. 擴大法規的職權範圍,將更多的數位服務和供應鏈納入保護範圍,保護英國的必要公共服務,避免受到網路攻擊。 2. 提供監管機關採取必要性網路安全措施的法源依據,從法律層面賦予監管機關採取更多安全措施的權利。 3. 強制要求納管對象網路安全事件通報,讓政府確實掌握網路攻擊的次數與相關資訊,以提升整體英國社會對於此類事件的理解與掌握。 該法案預計於2025年提交給英國議會審議,其對於網路安全、數位基礎設施和關鍵設施的安全保護框架,可以作為我國未來提升數位基礎建設及關鍵設施資訊網路安全的重要參考對象。

英國提出產品安全及電信基礎設施法案

  英國政府於2021年11月24日,提出產品安全及電信基礎設施法案(Product Security and Telecommunications Infrastructure Bill,PSTI法案),要求物聯網供應商、提供網際網路連線服務之公司或其他數位科技產品之製造商、進口商,及經銷商符合新網路安全標準,並對未遵守規範者處以巨額罰款。   PSTI法案之通過將保護消費者免受資安攻擊,並使政府得以引入更加嚴格的安全標準。該法案之內容包含,禁止數位科技產品之業者使用單一且通用之預設密碼,產品之預設密碼都必須有所不同;供應商應具備漏洞揭露政策,並應向客戶公開公司正採取何種防禦作為,處理該安全漏洞;應公開相關聯繫資訊或建立聯繫平台,使安全研究人員或其他人發現產品缺陷及錯誤時,方便與其聯繫;另外,針對不符合要求之產品或服務,政府亦將有權阻止其於英國境內銷售。   在電信基礎設施改革方面,將促進營運商與電信託管設備之土地所有權人進行更快速有效之談判,減少相關冗長的法律爭訟事件,例如,要求電信營運商透過訴訟外紛爭解決機制(Alternative Dispute Resolution,ADR)解決紛爭,無須訴諸法院。亦加快續約之談判流程,讓根據舊有協議安裝基礎設施之營運商,得以按照類似條款進行續約,英國政府希望透過這些措施使95%國土擁有4G網路覆蓋,至2027年大多數人口能使用5G網路。   PSTI法案生效後,英國政府將指定監管機構,其有權限針對違反規範之企業處以最高1000萬英鎊罰鍰,或以其在全球之營業總額的4%作為罰款。

美國國家標準暨技術研究院發布「全球AI安全機構合作策略願景目標」,期能推動全球AI安全合作

美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)於2024年5月21日提出「全球AI安全機構合作策略願景目標」(The United States Artificial Intelligence Safety Institute: Vision, Mission, and Strategic Goals,下稱本策略願景),美國商務部(Department of Commerce)亦於2024年參與AI首爾峰會(AI Seoul Summit)期間對外揭示本策略願景,期能與其他國家攜手打造安全、可靠且可信賴之AI生態系。 由於AI可信賴與否往往取決於安全性,NIST指出當前AI安全所面臨的挑戰包含:一、欠缺對先進AI之標準化衡量指標;二、風險測試、評估、驗證及確效(Test, Evaluation, Validation, and Verification, TEVV)方法不健全;三、欠缺對AI建模後模型架構與模型表現間因果關係的了解;四、產業、公民社會、國內外參與者等在實踐AI安全一事上合作程度極為有限。 為因應上述挑戰並促進AI創新,NIST在本策略願景中擬定以下三大戰略目標:(1)推動AI安全科學發展:為建立安全準則與工具進行技術合作研究,並預先部署TEVV方法,以利評估先進AI模型之潛在風險與應對措施;(2)推展AI安全實務作法:制定並發布不同領域AI風險管理之相關準則與指標,以達到負責任設計、開發、部署與應用AI模型與系統之目的;(3)支持AI安全合作:促進各界採用前述安全準則、工具或指標,並推動全球合作,以發展國際通用的AI安全風險應對機制。

新加坡國會通過支付服務法修正案,以降低洗錢及犯罪風險

  隨著新型態支付服務應用不斷推陳出新,利用數位支付型代幣(digital payment token)進行洗錢與犯罪愈加猖獗,新加坡國會(Parliament of Singapore)於2021年1月4日通過「支付服務法修正案」(Payment Services (Amendment) Bill),擴大監管範圍,以降低與數位支付型代幣有關的洗錢、資助恐怖主義(money laundering and terrorism financing, ML/TF)及隱匿非法資產風險。   本次修正重點包含(1)賦予新加坡金融管理局(Monetary Authority of Singapore, MAS)更大權責,可要求支付服務供應商落實相關客戶保護措施,例如要求數位支付型代幣服務供應商所保管之資產與自有資產分開存放,以確保客戶資產不受損失;(2)將虛擬資產服務供應商(virtual assets service providers)納入法規監管,擴大數位支付型代幣服務定義,使其包括代幣轉讓、代幣保管服務與代幣兌換服務;(3)擴大跨境匯兌服務(cross‑border money transfer service)定義,凡是與新加坡支付服務供應商進行資金轉移,不論資金是否流經新加坡,皆受新加坡金融管理局監管;(4)擴大國內匯款服務(domestic money transfer service)範圍,以涵蓋收付雙方均為金融機構之情形。   新加坡金融管理局表示,本次修法目的是為了因應支付服務產業的廣泛應用,降低潛在犯罪風險與維護金融安全,有效保護消費者權益,並維持金融穩定性與維護貨幣政策有效性。

TOP