美國聯邦運輸部(US Department of Transportation)於2021年1月11日發布「自駕車全面性計畫(Automated Vehicles Comprehensive Plan, AVCP)」,建立了交通部促進合作、透明性與管制環境現代化,並將自動駕駛系統(Automated Driving Systems)安全整合入交通系統之策略。基於過去「自駕車政策4.0」建立之原則上,自駕車全面性計畫定義了三個目標以達成其願景:
政策文件中也就相關目標提出了關鍵目的以及行動,包含先前交通部所提出的「自駕系統安全性框架(Framework for Automated Driving System Safety)」草案,將透過建立框架定義、評估並提供自駕系統的安全性需求,並同時保留創新發展之彈性;另外此政策文件也提出了如何將自駕系統融合現有技術應用之實際案例。交通部將會定期的檢視相關行動與計畫,以反應技術與產業發展,並減少重複性之行動,並將資源投注於重要領域。
本文為「經濟部產業技術司科技專案成果」
.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
RFID應用與相關法制問題研析-個人資料在商業應用上的界限 英國衛生部提出健康照護科技行為準則,以增進資訊安全以及新技術操作品質英國近來透過電子醫療紀錄的應用,以智慧演算法(intelligent algorithms)開發結合數位技術的創新醫療科技,這些成果多是以國民健保署(National Health Service, NHS)的資料做為基礎,因此關於資訊保障等議題也開始受到政府之重視。 2018年9月5日,英國衛生部(Department of Health and Social Care)在NHS健康與護理創新博覽會(NHS Health and Care Innovation Expo Conference 2018)中公布「以資料導向的健康照護科技之行為準則」(Code of Conduct for Data-driven Health and Care Technology)。此準則主要鼓勵研發公司在設計產品時,將患者的資訊安全以及新技術的操作品質列入考量。 此行為準則的目的主要在於改善整體研發環境,內容包含十項原則,分別為:界定使用者、界定價值(value proposition)、對使用的資料保持合理(fair)、透明(transparent)以及當責(accountable)的立場、符合一般資料保護規則(General Data Protection Regulation, GDPR)的資料最小化原則(data minimisation principle)、利用公開之標準、公開被使用的資料以及演算法的極限、在設計中內建合適的安全性設定、界定商業策略、展示技術使用上的有效性、以及公開演算法的類型、開發原因、與操作過程的監控方式。 官方期望接下來能廣納相關人員的建議,以增進此指引在產業運作上的適用性,並預期於2018年12月公布更新的版本。
法學新論:從產業全球化佈局觀點論我國研發成果管理之法制政策