歐盟智慧財產局出版《防偽技術指南》,協助企業及早防免智財侵權風險

  歐盟智慧財產局(European Union Intellectual Property Office)之智庫「歐盟智財侵權觀察平台」(the European Observatory)於今(2021)年2月出版《防偽技術指南》(Anti-Counterfeiting Technology Guide,下稱本指南),本指南全面介紹目前市面上防偽技術的內容,技術區分成電子型、標記型、化學型、物理型、機械及數位媒體型等五大防偽技術類別,供所有有興趣了解或欲執行防偽技術的各規模、各領域企業們參考。

  仿冒為全球性問題,幾乎威脅到了各領域行業的營運與生存,而全球仿冒品數量在互聯網時代之下,以每年增長15%的驚人速度上升中,已嚴重侵害了企業的品牌商譽與智慧財產權。企業雖懂得以註冊智財權的方式自我保護,但仿冒問題對企業帶來的攻擊性日益增加、防偽技術又多如牛毛且複雜,本指南彙整之資訊,尚補充了關於ISO標準的相關技術資訊,如《 ISO 22383:2020 》(產品與文件之安全性、彈性、真實性與完整性-重要產品認證方案之選擇與性能評估標準)。這些資訊可以跟防偽技術一併使用,精進企業整體防偽策略。

  此外,本指南對於彙整出的每項防偽技術或ISO的相關技術標準,都予以清楚介紹,並說明技術主要特性、優缺點、用途、實施條件以及相關成本,企業可透過本指南比較各式防偽技術,從而選定最適合其業務性質的防偽技術,及早防範仿冒風險,以保護企業之業務營運與品牌發展。

相關連結
你可能會想參加
※ 歐盟智慧財產局出版《防偽技術指南》,協助企業及早防免智財侵權風險, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=8642&no=57&tp=1 (最後瀏覽日:2026/01/19)
引註此篇文章
你可能還會想看
澳洲發布國家身分韌性戰略

所謂「身分」(Identity)是「特徵」(characteristics)或「屬性」(attributes)的組合,可讓個人在特定環境中與其他人區分開來,以證明自己的身分,例如出生日期和地點、臉部圖像等。澳洲政府有鑑於數位經濟的快速成長,線上身分驗證比實體身分驗證更為頻繁,促使犯罪人竊取和濫用身分資訊與資格證明(credentials),使得越來越多人面臨網路犯罪和詐欺的風險,澳洲在2021年時更因為身分竊盜事件橫行,造成超過18億美元的經濟損失。 為此,澳洲資料和數位部長會議(Data and Digital Ministers Meeting, DDMM)於2023年6月23日發布「國家身分韌性戰略」(National Strategy for Identity Resilience),以取代2012年國家身分安全戰略(National Identity Security Strategy),宣示澳洲政府加強身分基礎設施和對身分竊盜的韌性與復原力,推動澳洲各州、領地(territory)和聯邦(Commonwealth)採用全國一致的身分韌性方法,使得個人身分難以被竊取,縱然不幸遭竊取,受害人亦能夠輕易自身分犯罪中恢復身分。 該戰略由十項原則組成,包含:(1)無縫接軌的聯邦、州和領地數位身分系統;(2)具包容性的身分辨識機制;(3)個人與公私部門都有各自角色;(4)制定國家實體與數位資格證明標準;(5)建立生物辨識和經同意的身分驗證;(6)便利個人跨機構更新身分資訊;(7)更少的資料蒐集與保存;(8)明確的資料分享協議;(9)資格證明的一致撤銷和重新簽發;(10)明確的問責與責任。搭配短、中、長期的實施規畫,循序漸進地加強與一制化澳洲跨司法管轄區的身分安全管理機制。

品牌商標命名之實踐與提醒─從杜邦分析要件判斷商標混淆誤認之關鍵

陽明交通大學於2025年7月11日,透過律師向美國商標審判及上訴委員會(The Trademark Trial and Appeal Board,簡稱TTAB)提出答辯主張,主張其商標(縮寫為NYCU)並未和紐約大學的商標(縮寫為NYU)有混淆誤認之虞,以下將以此案為例,說明實務上如何運用DuPont Factors(又稱杜邦分析要件)判斷混淆誤認,品牌商標命名、註冊等階段時應注意的風險和實務上可行的因應措施。 杜邦分析要件係源於1973年的E.I. DuPont de Nemours & Co. v. Celanese Corp.案,用13個判斷分析要件檢視是否有商標混淆誤認的情形,是美國審查實務,或者相關商標爭議判斷,最常引用的判斷標準,並視個案情形引用對應要件。 本案陽明交通大學提出答辯主張包括:NYU與NYCU字母、意義等整體印象不同(第1項);NYU提供美國正式教育學位課程,而NYCU僅限於台灣課程,未提供美國正式學位,雙方提供不同之教育服務(第2項);NYCU僅有限參與國際會議並未於美國招生,通路未重疊,且消費族群均為高知識與謹慎決策者(第3~4項);無任何實際混淆的證據(第7項);NYCU長期使用該縮寫於國內外學術交流與排名中,未發生混淆而顯示兩者商標可共存(第8項);NYCU合法註冊校名之縮寫,具有使用與排他性權利,無混淆意圖亦未仿冒(第11項);雙方市場截然不同,混淆風險極低(第12項),以及若不准NYCU使用將造成教育機構正常名稱縮寫受限,牽涉公共利益、學術發展與合理使用(第13項)等。 品牌企業或學研法人不論從命名、商標註冊階段,甚至到商標異議、撤銷、侵權爭議等判斷,不可忽視商標之混淆誤認風險,將可能被迫改名、下架商品或服務調整行銷素材、重啟品牌命名流程等,耗費人力、時間或經費。因此,務必完善品牌商標管理機制,確保能掌握混淆誤認之判斷原則、階段性評估檢核,以降低品牌撞名或近似他人註冊商標之情形,進而鞏固品牌價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

聯合國推動「全球綠色新政」並倡導各國促進綠色投資及研發活動

  聯合國環境規劃署(UNEP)正式發表「全球綠色新政」(Global Green New Deal)報告,建議各國投入GDP1%(約7,500億美元)資助綠色環境建設及發展,除期使更落實綠色經濟倡議(Green Economy Initiative)內容外,並希望以此帶動綠領就業(Green Collar Job)及促進綠色研發活動蓬勃。     聯合國UNEP於2009年2月對外發表全球綠色新政報告,並倡導五大重要投資領域,包括以下: (1) 提昇各新舊建築物能源使用效率領域之投資。 (2) 再生能源(包括太陽能、風力、地熱能、生質能等)領域之投資。 (3) 永續交通運輸環境(包括氫能汽車、高速鐵路、快速捷運系統等)領域之投資。 (4) 全球性生態構成(包括潔淨水、森林、土壤等)基礎環境領域之投資。 (5) 永續農業(包括有機農產品)領域之投資。     聯合國UNEP並於研究報告中強調:綠色經濟轉向之根本驅動力在於導入相關綠色科技之解決方案,包括各種清潔生產製程、污染防治技術,以及管末和監控技術,涵蓋know-how、流程、商品、服務、設備、組織和管理等,均為綠色經濟蓬勃發展之關鍵環節。     而世界各國關於推動綠色新政投資之規劃行動,如歐盟於2008年11月29日通過經濟振興方案,總預算為2000億歐元(1.5%EU的GDP),方案內容涵蓋4大優先領域,亦即為民眾(people)、商業(business)、基礎建設及能源(infrastructure and energy)、研究與創新(research and innovation),歐盟也呼籲各國應多投入綠色科技研發活動。     而美國2009年2月通過之復甦與再投資法案(American Recovery and Reinvestment Act),亦將綠色新政涵蓋其中,其中編列61.3 billion美元投入「清潔、效率能源方案」,主要係投資於提升能源效率、發展潔淨能源及交通效率及科技研發等。     以外,日本政府於2009年2月亦指示著手研擬「綠色新政」規劃,,預計於6月後向首相提出建議書,以因應氣候變遷及經濟危機威脅等危機。而南韓則是於2009年1月宣布未來4年將投入50兆韓元推動「綠色新政」,並以此投資行動,刺激創造更多的綠色就業機會。

什麼是「日本Connected Industries」?

  Connected Industries為日本產業的未來願景,透過人、機器與科技的跨界連接,創造出全新附加價值的產業社會,以達到Society5.0理想目標。例如,物與物的連接形成物聯網(IoT)、人與機器合作拓展智慧與創新、跨國企業合作解決全球議題、跨世代的人與人連繫傳承智慧與技術、生產者與消費者接觸解決商業與社會問題等。   隨著第四次產業革命到來,IoT、大數據及 AI人工製會等技術革新,日本藉由高科技、技術人才及應變能力等優勢與數據技術相結合,目標是邁向以人類為中心、解決問題的新產業社會。Connected Industries的三大支柱分別為:   一、新數據社會(New Digital Society) 消除人與機械系統的對立,實現全新的數位化社會。解決新興科學技術如AI及機器人運用上的困難,並積極活用該技術幫助並強化人類解決問題的能力。   二、多層次合作(Multilevel Cooperation) 區域、世界及全球未來面臨複雜的挑戰,必須透過企業間、產業間及國與國間的連繫合作解決課題。   三、人力資源發展(Human Resource Development) 以人類為中心做思考,積極推展數據技術的人才養成,邁向智慧與技術的數據化時代。

TOP