歐盟執委會於2020年2月公布《人工智慧白皮書》(AI White Paper)後,持續蒐集各方意見並提出新的人工智慧規範與行動。2021年4月針對人工智慧法律框架提出規範草案(Proposal for a Regulation on a European approach for Artificial Intelligence),透過規範確保人民與企業運用人工智慧時之安全及基本權利,藉以強化歐盟對人工智慧之應用、投資與創新。
新的人工智慧法律框架未來預計將統一適用於歐盟各成員國,而基於風險規範方法將人工智慧系統主要分為「不可接受之風險」、「高風險」、「有限風險」及「最小風險」四個等級。「不可接受之風險」因為對人類安全、生活及基本權利構成明顯威脅,故將被禁止使用,例如:政府進行大規模的公民評分系統;「高風險」則是透過正面例舉方式提出,包括:可能使公民生命或健康處於危險之中的關鍵基礎設施、教育或職業培訓、產品安全、勞工與就業、基本之私人或公共服務、可能會干擾基本權之司法應用、移民與庇護等面向,而高風險之人工智慧在進入市場之前須要先行遵守嚴格之義務,並進行適當風險評估及緩解措施等。「有限風險」則是指部分人工智慧應有透明度之義務,例如當用戶在與該人工智慧系統交流時,需要告知並使用戶意識到其正與人工智慧系統交流。最後則是「最小風險」,大部分人工智慧應屬此類型,因對公民造成很小或零風險,各草案並未規範此類人工智慧。
未來在人工智慧之治理方面,歐盟執委會建議各國現有管理市場之主管機關督導新規範之執行,且將成立歐洲人工智慧委員會(European Artificial Intelligence Board),推動人工智慧相關規範、標準及準則之發展,也將提出法規沙盒以促進可信賴及負責任之人工智慧。
美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。
區塊鏈電子存證法律效力於中國大陸首獲認可中國大陸於2017年8月在杭州設立網路法院(Internet court),專責處理網路購物、線上著作侵權等涉及網路爭議之案件。該法院網站設有「線上訴訟平台」,當事人在該平台使用手機號碼註冊帳號後,可遞交起訴狀和相應的證據材料,勾選所需依據的法律條文,系統將自動讀取該當事人之相關身分資訊、線上交易過程及各類表單資料。 近日該網路法院針對一線上著作權侵權案件,於審判過程中採用區塊鏈電子數據作為證據,等同認可區塊鏈電子存證之法律效力。由於區塊鏈作為去中心化的數據庫,每筆網路交易訊息皆同步於整個區塊鏈網路,因此區塊鏈有著難以竄改、刪除的特性。杭州網路法院將從第三方存證平台的資格、侵權網頁取證技術可信度及區塊鏈電子數據保存完整性進行審查,對本案電子數據之證據效力作出認定。 杭州網路法院認為,對於採用區塊鏈等技術進行存證之電子數據,應秉承開放、中立的態度進行個案分析認定,不得因為區塊鏈等技術本身屬於新型且複雜之技術而排斥或提高其認定標準。本案認可區塊鏈技術存證之法律效力,將對區塊鏈未來應用發展有很大的影響,隨著技術發展逐步成熟,產業應用的實際效果也愈發顯著。
歐盟部長理事會通過開放GSM頻段供3G寬頻技術使用歐盟部長理事會(Council of Ministers)已跟隨歐洲議會腳步,通過對「GSM 指令」(Global System for Mobile Communications Directive)進行修改的提案,准許電信營運商在900 MHz頻段上提供UMTS服務(3G通訊技術之一,可向下相容GSM與GPRS),例如WCDMA通訊架構可於900 MHz上運用。這項決議仍須經過歐盟各會員國國會和監督機構認可,預計2009年10月開始實施。 原先指令在1987年所提出,將900 MHz和1800 MHz頻段劃歸GSM手機專用,此作法有效促進GSM產業的蓬勃發展。修改該指令的提案,則是允許讓900 MHz頻段在繼續供GSM服務使用的同時,也開放給行動上網等更高速的泛歐洲通訊服務。預估將能大幅降低電信營運商網路建制成本,可減少大約16億歐元的支出。 據歐盟電信委員會Viviane Reding委員表示,GSM Directive的修訂,將為行動通訊業者解除限制,並因此能在GSM頻段上建置更先進的技術,以提供高速行動寬頻服務;她預期這將有效促進歐洲的無線經濟(wireless economy),並催生「數位歐洲」(Digital Europe)的誕生。相關發展值得台灣電信通訊產業注意。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」