歐盟提出人工智慧法律調和規則草案

  歐盟執委會(European Commission)於2021年4月21日提出「人工智慧法律調和規則草案」(Proposal for a Regulation Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts)(簡稱AI規則草案),旨在平衡「AI運用所帶來的優勢」與「AI對個人或社會所帶來的潛在負面衝擊」,促使會員國在發展及運用AI時,能採取協調一致的態度及方法,共同維護歐洲公民基本權利與歐盟價值。

  歐盟自2019年起即倡議發展「值得信賴的AI」(Trustworthy AI)。AI規則草案之提出,除了落實執委會2019年至2024年之政策願景外,亦呼應2020年歐洲議會(European Parliament)之建議—針對AI應用之機會與利益採取立法行動,並確保合乎倫理原則。惟鑒於歐盟在環境、健康、公共事務、金融、交通、農業等領域對AI應用之高度需求,以及企業仰賴AI技術提升競爭優勢等因素,執委會係以「風險為基礎」之概念取向(risk-based approach)制定AI規則草案,避免對新技術發展造成不必要的限制或阻礙。

  本規則草案將AI系統,依其「對歐盟基本權利或價值所創造的風險程度」,分為下列三種類型,並施以不同程度的監理方式:

一、不可接受之風險:原則上禁止使用此類型AI系統或使其進入歐盟市場。例如:利用潛意識技術操控個人、在公共場合利用「即時遠端生物辨識系統」進行執法、公務機關普遍對個人進行社會評分等。

二、高風險:於附錄中列出所謂高風險AI系統,要求高風險AI系統之提供者遵循風險管理、資料治理、文件紀錄保存、透明性與資訊揭露、人為監督、健全性、準確性與資安等要求;且AI系統進入歐盟市場前,需進行符合性評估(conformity assessment),進入市場後,則需持續監控。

三、非不可接受之風險亦非高風險:鼓勵AI系統提供者或使用者,自願建立行為準則(codes of conduct)。

  AI規則草案亦鼓勵會員國建立AI監理沙盒(regulatory sandbox)機制,且以中小企業、新創公司為優先對象,使創新AI系統進入市場之前,能於可控環境中依明確計畫進行開發、測試與驗證。

相關連結
相關附件
你可能會想參加
※ 歐盟提出人工智慧法律調和規則草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8674&no=55&tp=1 (最後瀏覽日:2025/12/13)
引註此篇文章
你可能還會想看
英國推動「公共緊急警報:行動通訊預警試驗」實證服務

  為試驗導入智慧防救災各項新興技術與機制,英國國民緊急事務秘書處 (Civil Contingencies Secretariat, CCS) 於2013年秋天分別對北約克郡 (North Yorkshire)、格拉斯哥 (Glasgow) 和薩福克郡 (Suffolk) 三地區進行共三次的「公共緊急警報:行動通訊預警試驗」(Public emergency alerts: mobile alerting trial)。由於英國已有92%民眾具有行動電話,並以隨時得接收訊息為出發點,進行有別於傳統預警系統之公共緊急預警系統試驗。此試驗由國民緊急事務秘書處與O2、Vodafone和EE三間行動網路業者 (mobile network operators) 和地方政府應變單位合作,雖係以行動電話為試驗主軸,但試驗重點則以政府或地方政府應變單位「不知道」民眾個人電話,亦不要求民眾簽署才能取得此次試驗訊息為主。   此三次試驗手段有二,包括「小型區域廣播服務」 (cell Broadcast service, CBS),係以單點對多點發送緊急簡訊,以及「以地區為基礎的簡訊」 (location-based SMS messaging),以群組方式發送簡訊至指定地區用戶,二種發佈緊急訊息的方法為試驗。   北約克郡 (North Yorkshire)主要與EE進行發送緊急水災警報系統,對於廣播訊息發送的時間或調整時間長短以供傳送「泡沫警報」(表訊息多寡)到地域寬廣或數個地區而言,是有效的手段。格拉斯哥 (Glasgow)地區為蘇格蘭最大城市,與O2業者進行最大型的試驗,發送數千緊急訊息給民眾。而薩福克郡(Suffolk)則是由於該區不僅於市中心具兩個火車站,遊客也眾多,因此試驗場域以住商混合住宅區及處於該區的人民為主。除小型區域廣播服務和以地區為基礎的簡訊外,薩福克郡也與社交網路Twitter合作,共傳送三種訊息試驗。   透過上述試驗,公共緊急警報:行動通訊預警試驗計畫報告也提出針對隱私與對於電信服務業者於災害發生當下之通訊服務義務未來應制訂相關規範,以及應統一發送訊息之通訊警報協定標準等建議。

中國大陸食品安全法修訂草案二審稿,將基因改造食品標識明確列入

  2014年12月22日,中國大陸食品安全法修訂草案二審稿增加關於食品貯存和運輸、食用農產品市場流通、基因改造食品標識(中國大陸用語為轉基因食品標籤)等方面之內容。二審稿規定,生產經營基改食品皆應按照規定進行標識,未按規定進行標識的,沒收違法所得和生產工具、設備等物品,最高可處貨值金額五倍以上十倍以下罰款,情節嚴重者責令停產停業,直至吊銷許可證。對於基因改造標識,中國大陸已於《農業轉基因生物安全管理條例》有規定,此次二審稿為保障消費者的知情權,增加加重食品安全違法行為的法律責任,採取多種手段嚴懲,並希望以法律形式將其確定。   我國食品安全衛生管理法於2014年12月10日修法中,對於基改食品標識部分並未修訂,僅在第22條及24條規定了要標識「食品之容器或外包裝,應以中文及通用符號,明顯標示下列事項…(包含基因改造食品原料)」以及「食品添加物之容器或外包裝,應以中文及通用符號,明顯標示下列事項中…(含基因改造食品添加物之原料)」。然而,我國與中國大陸此次修法雖皆有明訂,但明訂方式、標準等並未描述,又如美國佛蒙特州有意立法通過之基改食品標識法也在今年2015年1月因有爭議舉行公聽會,使該法令生效前恐有中止之情事。目前看來,不同國家有不同的基因改造食品標識政策,但國際間仍致力建立一套統一的規範。

日本文部科學省發布2021年科學技術與創新白皮書,著眼於韌性社會願景與疫後對策的具體措施

  日本文部科學省於2021年6月8日公布「2021年科學技術與創新白皮書」(令和3年版科学技術・イノベーション白書),為文部省就政府所訂立之科技政策藍圖,所發布的年度報告書。本年度白皮書循往例,區分為第一部分與第二部分。第一部分著重同年3月發布之第6期科學技術與創新基本計畫(第6期科学技術・イノベーション基本計画)框架下,為達成Society 5.0之願景政府所規劃的一系列政策;第二部分則回顧去(2020)年,政府針對科技與創新創造所採取的各項對策。   本白皮書就韌性社會所需科研項目、強化研究能量的激勵措施等層面,提出以下具體方向: (1)推動社會數位化與零碳排放(脱炭素化)   為強化網路虛擬空間與現實社會間的資源共享與互動發展,虛擬空間之基礎技術方面,持續研發超級電腦、AI與量子電腦,利用所累積的資料運用於深度分析與模擬,並實現超高速計算與量子通訊。虛擬空間與現實社會結合之應用型技術研發方面,包含能輔助身體運作的外部機械、透過自駕車系統銜接高齡化社會交通需求、以及遠端遙控之機器人技術應用於高風險作業環境。推動零碳排放、強化防災能量等面向,則藉由綠色成長戰略、綠色創新基金等政策,發展核融合、次世代蓄電池、精準預測氣候變遷之系統等新興技術;運用AI模擬等強化地震與天災的預報精準度,提升社會應對大規模自然災害的韌性。 (2)「知識」的整合創造與利用,以用於解決各類社會議題   考量社會議題的解決,不僅在於前瞻性自然科學技術的研發,尚需同步理解人類社會的多樣性。同時,人文社會科學近年來,亦多有採用自然科學的研究方法。因之,白皮書主張兩方的跨域知識結合,應用上強調須以人為本來解決各類社會議題。 (3)強化基礎研究能量   應著手改善出於個人經濟因素,放棄申請博士後課程的現況,創造年輕研究者敢於投入自身有興趣且具挑戰性研究課題之環境。基此,白皮書提出設置10兆日圓規模的大學基金,提升約15,000名博士後課程學生的待遇,並推動「創造發展性研究支援事業」(創発的研究支援事業)措施,穩定提供10年期間的研究資金。 (4)COVID-19疫情對策   持續投入研發治療方法(如檢驗抗病毒藥物Favipiravir用於治療COVID-19的效果與安全性)、疫苗與相關醫療器材,並推動以遠距方式進行研究活動,導入機器人技術等來發展自動化實驗、於虛擬空間內進行實驗等;另一方面,有效的防疫對策(如避免人潮密集、密切接觸、密閉空間的「三密」),根基於COVID-19的最新科研成果,因此需讓科學性、客觀性資訊透過適切的管道(如日本科學未來館網站),以淺顯易懂的形式向大眾宣達。

日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書」

  2017年6月28日日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書-以實現產業整合(Connected Industries)為目標-」。日本政府為能持續推動該國經濟,以建立創新附加價值的產業社會為目標,以實現產業整合並促進創新與競爭環境,於本年度一月至六月召開七次「第四次產業革命競爭政策研究會」,進行日本競爭政策檢討,並於28日發佈第一階段報告書。   本報告中提出四種大數據應用的商業模式,分別為:單獨成長型、附隨應用型、他面活用型與多面展開型四種。單獨成長型著重於產品或服務本身透過資料蒐集應用來改善品質。附隨應用型則除了透過資料搜集以進行產品與服務品質改善以外,亦擴散經驗運用到其他使用者的服務內容改善。他面活用型則透過產品或服務的資料蒐集,運用到其他的領域(例如駕駛資料的蒐集運用到保險費率的計算)。多面展開型則將多種不同的產品與服務的資料取得後綜整分析以能相互提升品質,或應用到新發展的領域。   報告中並提出資料運用對競爭環境影響的三個關鍵步驟。首先是資料本身的影響力,包括資料本身的必要性、資料品質、蒐集成本等。其次為資料蒐集的可能性,因其他競爭者也可能取得相同資料,故應確保資料的稀少性與蒐集能力的差異(與競爭者能區別)。第三是資料運用可能性,應注意資料應用上是否有資金、人才在競爭上的其他限制。

TOP