德國聯邦參議院通過保護數位世界隱私之《電信與電子媒體資料與隱私保護法》

  德國聯邦參議院於2021年5月28日通過《電信與電子媒體資料與隱私保護法》(Gesetz zur Regelung des Datenschutzes und des Schutzes der Privatsphäre in der Telekommunikation und bei Telemedien, TTDSG),其目的係保護數位世界中的資料與隱私,平衡數位服務使用者利益與公司經濟利益,並解決因德國電信法(Telekommunikationsgesetz, TKG)、電信媒體法(Telemediengesetz, TMG)與歐盟一般資料保護規則(General Data Protection Regulation, GDPR)同時並行,使消費者、電信服務提供者以及監管機關不確定如何適用上開法律之情況。

  TTDSG彙集TKG、TMG中資料與隱私保護相關之條文,包含電信保密(Fernmeldegeheimnis)(第3條至第8條)、交通位置資料(第9條至第13條)、來電通知與號碼顯示(第14條至第16條)、終端使用者名錄和相關資料提供(第17條至第18條),以及允許匿名化、可隨時停止使用服務和保護未成年之相關措施(第19條至第23條),並參考GDPR和電子隱私保護指令(ePrivacy-Richtlinie)新增數位遺產(digitaler Nachlass)、終端設備隱私保護、同意管理以及監管之規定。

  TTDSG於第4條新增數位遺產規定,終端使用者繼承人或具有相似法律地位者,可以向供應商行使繼承人權利,不受電信保密相關規定限制;在終端設備隱私保護和同意管理之部分,TTDSG第24條規定原則上第三方僅能在終端使用者同意下,於使用者的終端設備中儲存與近用資料,且當事人可隨時撤銷同意。

  最後在監管方面,則分為個人資料保護相關與電信媒體領域,前者依TTDSG第28條、第29條由德國聯邦資料保護與資訊自由委員會(Die Bundesbeauftragte für den Datenschutz und die Informationsfreiheit, BfDI)作為獨立的資料保護監管機構,後者則依TDSG第30條屬德國聯邦網路局(Bundesnetzagentur)的職權範圍。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 德國聯邦參議院通過保護數位世界隱私之《電信與電子媒體資料與隱私保護法》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8701&no=64&tp=1 (最後瀏覽日:2026/02/13)
引註此篇文章
你可能還會想看
美國佛羅里達州「基於保險目的之基因資訊法」最新修正於2020年7月1日正式施行

  美國佛羅里達州州長於2020年6月30日簽署「基於保險目的之基因資訊法」(Genetic Information for Insurance Purposes)法律修正案,並於2020年7月1日正式生效施行。本次「基於保險目的之基因資訊法」修正重點有二: 將「人壽保險」和「長期照護保險」保險人納入「禁止僅根據個人基因資訊即取消、限制、拒絕承保或設定不同保險費費率」之列; 明確規定醫療保險、人壽保險及長期照護保險之保險人,不得基於保險目的,向要保人、被保險人索取基因檢測結果,或要求要保人、被保險人須完成基因檢測後方同意核保。   同時,本次「基於保險目的之基因資訊法」修正理由亦明確說明:禁止醫療保險、人壽保險及長期照護保險之保險人利用基因檢測結果,並非禁止保險人依據醫療紀錄和醫療診斷結果進行核保或計算保險費費率,以此釋疑保險人對此次修正之擔憂。   美國聯邦參議院於2008年即通過「基因資訊平等法」(Genetic Information Nondiscrimination Act of 2008, GINA),惟「基因資訊平等法」僅禁止醫療保險保險人利用基因資訊進行核保,並未禁止其他類型之保險人。美國佛羅里達州本次修正「基於保險目的之基因資訊法」將人壽保險和長期照護保險一併納入規定,是全美首次擴大禁止利用基因資訊進行核保之保險類型。

世界衛生組織公布「人工智慧於健康領域之倫理與治理」指引

  世界衛生組織(World Health Organization, WHO)於2021年6月底公布「人工智慧於健康領域之倫理與治理」(Ethics and governance of artificial intelligence for health)指引。目前人工智慧於在改善診斷、治療、健康研究、藥物開發及公共衛生等健康領域皆有廣泛之應用與前景,而該指引首先指出人工智慧應用於健康領域中最相關之法律與政策外,並強調相關應用皆須以「倫理」及「人權」作為相關技術設計、部署與使用之核心,最後則提出人工智慧應用於健康領域之六大關鍵原則: 一、保護人類自主性(autonomy):本指引認為人類仍應該掌有關於醫療保健系統之所有決定權,而人工智慧只是輔助功能,無論是醫療服務提供者或患者皆應在知情之狀態下作決定或同意。 二、促進人類福祉、安全與公共利益:人工智慧不應該傷害人類,因此須滿足相關之事前監管要求,同時確保其安全性、準確性及有效性,且其不會對患者或特定群體造成不利影響。 三、確保透明度、可解釋性與可理解性(intelligibility):開發人員、用戶及監管機構應可理解人工智慧所作出之決定,故須透過記錄與資訊揭露提高其透明度。 四、確立責任歸屬(responsibility)與問責制(accountability):人工智慧在醫學中所涉及之內部責任歸屬相當複雜,關於製造商、臨床醫師及病患間相關之問責機制之設計將會成為各國之挑戰,故須存在有效之機制來確保問責,也應避免責任分散之問題產生。 五、確保包容性(inclusiveness)與衡平性(equity):應鼓勵應用於健康領域之人工智慧能被廣泛且適當地使用,無論年齡、性別、收入及其他特徵而有差別待遇,且應避免偏見之產生。 六、促進具適應性(responsive)及可持續性之人工智慧:人工智慧應符合設計者、開發者及用戶之需求與期待,且能充分具適應性之回應且符合使用環境中之要求。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

優質網路社會基本法之推動芻議

TOP