澳大利亞聯邦法院作出人工智慧可為專利發明人的認定

  2021年7月30日,澳大利亞聯邦法院做出一項裁定,認為人工智慧(Artificial Intelligence, AI)可作為專利申請案的發明人。

  隨著人工智慧的功能不斷演進,人工智慧已經開始展現出創新能力,能獨自進行技術上的改良,此判決中的人工智慧(Device for the Autonomous Bootstrapping of Unified Sentience, DABUS)係由人工智慧專家Stephen Thaler所創建,並由DABUS自主改良出食品容器與緊急手電筒兩項技術。

  Thaler以其自身為專利所有人,DABUS為專利發明人之名義,向不同國家提出專利申請,但分別遭到歐盟、美國、英國以發明人須為自然人而駁回申請,僅於南非獲得專利,此案中澳大利專利局原亦是做出駁回決定,但澳大利亞聯邦法院Beach法官日前對此作出裁示,其認為1990年澳大利亞專利法中,並未將人工智慧排除於發明人之外,且專利並不如著作權般強調作者的精神活動,專利更重視創造的過程,其認為發明人只是個代名詞,其概念應具有靈活性且可隨著時間演變,故其認為依澳大利亞專利法,人工智慧亦可作為專利發明人。

  該法院的裁定雖是發回澳大利亞專利局重新審核,且澳大利亞專利局仍可上訴,因此DABUS是否能順利成為專利發明人尚有變數,但此案對於人工智慧是否可為發明人已帶來新一波的討論,值得業界留意。

「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

相關連結
你可能會想參加
※ 澳大利亞聯邦法院作出人工智慧可為專利發明人的認定, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8703&no=55&tp=1 (最後瀏覽日:2026/02/04)
引註此篇文章
你可能還會想看
日本國土交通省航空局公布日本無人機飛行安全指引

  日本國土交通省航空局於2017年9月12日公布修正版日本無人機飛行安全指引(「無人航空機(ドローン、ラジコン機等)の安全な飛行のためのガイドライン」を改定しました),乃依據修正之航空法規定(平成27年法律第67號)制訂無人機飛行之相關基本規則。   定義所謂無人機乃指非人搭乘,透過遠距遙控或自動駕駛而飛行之飛機、旋翼飛機、滑翔機及飛艇。而無人機禁止飛行在150公尺以上高空,不得在航空站周邊空域(包含進入),以禁止在人口集中地區之上空(150公尺以下)。   除經國土交通省同意之例外規則外,無人機之飛行必須在日出後日沒前,且需在直接肉眼目視範圍內之監視下,與第三人或他人建築物、車輛等物體應距離30公尺以上,並不得在祭拜或假日等人群聚集之場所上空飛行,也不得輸送爆裂物等危險物品,亦不得從無人機上投擲物品。另外應注意事項,例如飛行場所除了航空站周邊外,直升機等降落可能之場所、迫降場所、高速公路或高速鐵路等、鐵路周邊或車道周邊等、高壓電線、變電所、電波塔及無線電設施等附近應注意飛行安全。   於飛行之際,不得飲酒等造成不當操作,飛行前應注意天氣狀況、飛機無損害或故障、電池燃料充足等,並確保周邊無障礙物,並應迴避與飛機或無人飛機之衝突。平時應保持無人機之狀況良好,且維持日常操作良好技能,並鼓勵投保人身或財產保險。

美國奧克拉荷馬州修正《個資事故通報法》,擴充個資定義範圍並強化通報機制

美國奧克拉荷馬州修正《個資事故通報法》,擴充個資定義範圍並強化通報機制 資訊工業策進會科技法律研究所 2025年07月22日 現行我國關於非公務機關就個資事故進行通報之規定,散落於各中央目的事業主管機關制定之各業別個人資料檔案安全維護管理辦法或相關辦法中,且前揭各辦法對於通報之標準不盡相同。各國主管機關紛紛強化個資治理法制,而美國奧克拉荷馬州修正關於個人資料定義、適當防護措施及個資事故通報機制等事項,以建立更完善之規範。 壹、事件摘要 美國奧克拉荷馬州議會業於2025年5月20日通過第626號法案(Senate Bill 626)[1],修正《個資事故通報法》(Security Breach Notification Act)[2],其目的係為補充現行治理規範之不足,修正重點涵蓋:擴充法定用詞之定義,針對「個人資料」(Personal Information)與「適當防護措施」(Reasonable Safeguards)等條文予以補充與增列;強化個資事故(Breach of the security of a system)之通報機制與設立豁免條款,並釐清與其他法規間之適用關係;以及修訂違法情事之民事裁罰。此外,本次修法亦明定,若機構或個人已採取適當防護措施,得作為民事訴訟中之抗辯理由。本法將自2026年1月1日起正式生效,並適用於自該日起所發現、判定或通報之個資事故,相關單位應即早進行法遵準備,以確保制度落實。 貳、修法重點 本次修法主要包含三大核心面向,簡要說明如下: 一、擴充法定用詞之定義 (一)個人資料 於現行法規對個人資料之定義下,再增加新資料類別: 1.與驗證碼、存取碼或密碼結合使用時,可用以登入特定個人金融帳戶之專屬電子識別碼(Electronic Identifier)或路由代碼(Routing Code); 2.用以辨識特定自然人之獨特生物特徵資料,例如指紋、視網膜或虹膜影像,或其他具體實體或數位形式之生物辨識資料。 (二)適當防護措施 適當防護措施係指,為確保個人資料安全而考量組織或機構之規模、產業別、以及保有之個資類別與數量所制定之政策及作業實務。此概念包括但不限於:進行風險評估、建立技術面及實體面之多層次保護機制、對人員實施教育訓練,及建立個資事故應變計畫等。 二、強化事故通報機制與設立豁免條款 本法要求於發現系統個資事故並已通知受影響之當事人後,應於60日內向州檢察總長(Attorney General)提交書面通報,載明涉及之個人資料類別、事故性質、受影響人數、預估之財務損失、所採行之適當防護措施等必要內容。惟若事故影響人數低於500名州民,或事故發生於徵信機構且影響人數未達1,000人,則可免除向檢察總長通報之義務。 此外,本法明確規範,若特定機構已依據其他法律,如《奧克拉荷馬州醫療資安保護法》(Oklahoma Hospital Cybersecurity Protection Act of 2023)或聯邦《健康保險可攜及責任法》(Health Insurance Portability and Accountability Act of 1996)等履行相關通報義務,則視為已符合本法之要求。 三、民事裁罰 本法明定,民事罰鍰之裁量將審酌事故規模、事故發生後組織之因應作為及是否履行事故通報義務等因素而定,以確保裁量之比例原則。裁量情形說明如下: 1.若機構已採行適當防護措施且依法進行事故通報者,得免除民事責任; 2.若未採取適當防護措施,惟仍依規定完成事故通報者,則須負擔實際損害賠償責任並處以最高75,000美元罰鍰; 3.未落實適當防護措施與事故通報法定義務者,最高處以150,000美元罰鍰。 參、事件評析 本次修法可見奧克拉荷馬州就數位時代資安威脅所採行之積極因應作為,其修正重點包含:擴充個人資料之定義並明定適當防護措施之內容,俾利降低企業法遵成本及法律適用之不確定性;強化事故通報機制並設置合理豁免條款,以確保資訊透明度;於罰則規範中明定民事罰鍰之裁量,應審酌事故規模及是否履行事故通報義務等因素,以符合比例原則。 有鑑於本法修正後所課予之法定義務,建議企業應採行下列因應措施:(1)全面盤點所保有之個人資料,尤應注意新增納管之電子識別碼及生物特徵等資料;(2)檢視並強化現有防護機制,確保符合適當防護措施之要求;(3)建立標準化通報應變程序;(4)強化教育訓練。此外,企業宜定期檢視法規動態,以確保持續符合法規要求。 [1] Bill Information for SB 626, OKLAHOMA STATE LEGISLATURE, http://www.oklegislature.gov/BillInfo.aspx?Bill=sb626&Session=2500 (last visited June 1, 2025). [2] BILL NO. 626, OKLAHOMA STATE LEGISLATURE, https://www.oklegislature.gov/cf_pdf/2025-26%20ENR/SB/SB626%20ENR.PDF (last visited June 2, 2025).

日本醫藥品醫療器材等法修正研析─以醫療應用軟體為中心

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP