日本內閣所屬智慧財產戰略本部公布〈智慧財產推進計畫2021〉

  日本於2021年7月13日公布〈智慧財產推進計畫2021〉。〈智慧財產推進計畫〉為智慧財產戰略本部自2003年開始,每年持續修訂至今的行動計畫。今年最新公布的〈智慧財產推進計畫2021〉,指出日本企業在智財.無形資產的投資活動相較於其他國家有嚴重停滯之現狀,並提出今後智財戰略的7項重點施政:

  1. 促進智財、無形資產的投資及運用:藉由企業揭露自身的經營戰略,吸引投資者關注智財並投資,藉此建立智財交易環境。
  2. 推動「運用標準戰略」:數位化使產業結構改變,從傳統金字塔型價值鏈轉為以功能連結的階層模式;此轉變讓標準戰略成為建立市場競爭優勢不可或缺的手段。
  3. 建立促進數據活用的環境:例如制定跨領域合作的數據流通基礎方針,或是創建數位交易市場,將數據交易的價值可視化,藉此吸引投資。
  4. 建立著作權集中許可制度:為解決數位化所產生的權利處理成本問題,需建立可以快速處理龐大且多樣化的著作權集中許可制度。
  5. 強化智財權在初創或中小企業、農業領域的運用:例如提供企業智財布局的諮詢窗口、建立農業技術的商業機密保護制度。
  6. 強化支援智財運用的體制、營運和人才基礎:例如商標審查效率強化、實現各級學校智財教育的普及。
  7. 重建COOLJAPAN戰略:因應疫情後的社會變化,追加建立數位技術的運用,以確保COOLJAPAN戰略持續發展。

本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
相關附件
你可能會想參加
※ 日本內閣所屬智慧財產戰略本部公布〈智慧財產推進計畫2021〉, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8728&no=57&tp=1 (最後瀏覽日:2026/01/14)
引註此篇文章
你可能還會想看
歐盟執委會發布2020歐洲創新計分板報告

  歐盟執委會(European Commission, EC)於2020年6月23日發布2020歐洲創新計分板報告(European Innovation Scoreboard 2020, EIS),其以「整體結構條件」(Framework conditions)、「投資」、「創新活動」和「影響力」(Impacts)四大指標評比歐盟成員國以及其他歐洲國家的研究與創新績效、創新環境等;各指標下再細分為10個次標和27個子標,例如人力資源、友善創新環境建構、政府部門研發創新支出、企業專業職能訓練、專利與商標申請、高科技產品出口等。   歐洲計分板將歐盟會員國創新表現分為四組,以2020年綜合創新能力分別為:(1)創新領導者(Innovation Leaders):包含丹麥、芬蘭、荷蘭、瑞典等國,為創新表現大於歐盟成員國平均創新度20%以上者;(2)優秀創新者(Strong Innovators):包含奧地利、比利時、法國、德國、葡萄牙等,創新表現大於歐盟成員國平均者;(3)中等創新者(Moderate Innovators):包含希臘、匈牙利、義大利、西班牙、波蘭等國,其創新表現小於歐盟平均者;以及最後一組(4)適度創新者(Modest Innovators):包含羅馬尼亞及保加利亞,為創新表現低於歐盟平均之50%。   此外,在各特定領域上,該報告亦有對不同國家進行排名。例如在創新研究體系領域,表現最好者為盧森堡、丹麥、荷蘭;中小企業帶領創新則以葡萄牙和芬蘭表現最佳;創新協力合作(Innovation linkages and collaboration)以奧地利、比利時、芬蘭最佳。而在全球綜合創新表現上,南韓為創新表現最佳,其向加入專利合作條約(Patent Cooperation Treaty, PCT)國家提交之專利申請數、商標申請數、設計專利申請數量最多,分別為世界其他先進國家的2-10倍不等(申請數量以每十億GDP為一單位計算);其次是加拿大、澳洲、日本、歐盟、美國與中國。歐盟已是第二年超越美國,並在其他主要競爭者中(美國、中國、巴西、俄羅斯、南非等)保持優先,唯優勢差距開始減少。此外,EIS跨年度分析評比,是以歐盟2012年創新表現為基準。報告中將歐盟2012年之創新表現預設為100,在2012-2019年間,中國的創新表現評分自79成長至97,而美國則在93-99間穩定變動;特別是2019和2020兩年,美國創新表現均維持在99,而無顯著之進步。故報告預測若依此趨勢,中國創新表現將在近年超越美國。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

OECD啟動全球首創的《開發先進人工智慧系統組織的報告框架》

2025年2月7日,經濟合作暨發展組織(Organization for Economic Cooperation and Development,OECD)正式啟動《開發先進人工智慧系統組織的報告框架》(Reporting Framework for the Hiroshima Process International Code of Conduct for Organizations Developing Advanced AI Systems,簡稱G7AI風險報告框架)。 該框架之目的是具體落實《廣島進程國際行為準則》(Hiroshima Process International Code of Conduct)的11項行動,促進開發先進人工智慧系統(Advanced AI Systems)的組織建立透明度和問責制。該框架為組織提供標準化方法,使其能夠證明自身符合《廣島進程國際行為準則》的行動,並首次讓組織可以提供有關其人工智慧風險管理實踐、風險評估、事件報告等資訊。對於從事先進人工智慧開發的企業與組織而言,該框架將成為未來風險管理、透明度揭露與國際合規的重要依據。 G7 AI風險報告框架設計,對應《廣島進程國際行為準則》的11項行動,提出七個核心關注面向,具體說明組織於AI系統開發、部署與治理過程中應採取之措施: 1. 組織如何進行AI風險識別與評估; 2. 組織如何進行AI風險管理與資訊安全; 3. 組織如何進行先進AI系統的透明度報告; 4. 組織如何將AI風險管理納入治理框架; 5. 組織如何進行內容驗證與來源追溯機制; 6. 組織如何投資、研究AI安全與如何降低AI社會風險; 7. 組織如何促進AI對人類與全球的利益。 為協助G7推動《廣島進程國際行為準則》,OECD建構G7「AI風險報告框架」網路平台,鼓勵開發先進人工智慧的組織與企業於2025年4月15日前提交首份人工智慧風險報告至該平台(https://transparency.oecd.ai/),目前已有包含OpenAI等超過15家國際企業提交報告。OECD亦呼籲企業與組織每年定期更新報告,以提升全球利益相關者之間的透明度與合作。 目前雖屬自願性報告,然考量到國際監理機關對生成式AI及高風險AI 系統透明度、可問責性(Accountability)的日益關注,G7 AI風險報告框架內容可能成為未來立法與監管的參考作法之一。建議企業組織持續觀測國際AI治理政策變化,預做合規準備。

美國專利商標局啟動軟體專利檢視計畫

  美國專利商標局(United States Patent and Trademark Office, USPTO)最近宣布將運用同儕檢視的概念,啟動名為”Peer Review Pilot”的軟體專利檢視先導計畫(以下簡稱PRP),該計畫並將與紐約大學進行中的專利共同檢視計畫(Community Patent Review Project (CPRP))合作,以確保軟體專利的品質。   CPRP乃是由紐約大學法學院設置及管理的網站,該網站允許技術專家進一步予以檢視並提供相關資訊的機會,希望專利申請案在經過同儕檢視後,才進一步送交官方審查,藉此縮減審查程序的時間;而UPSTO的PRP也有類似的運作概念,PRP計畫在USPTO開始進行官方的專利審查工作之前,提供ICT領域的技術專家一個針對專利申請書專的權利主張,提出技術之參考註解(annotated technical references)的機會。   USPTO指出,專利審查官員唯有在資訊充分的前提下,才能做出正確的決定,考量專利審查官員必須在有限的時間內找出正確的訊息以對個別案件做出決定,而軟體相關技術的來源碼又不容易取得,也沒有完整的紀錄可供查詢,因此USPTO大膽採用同儕檢視的方法,期能藉此改善軟體專利的審查時間與品質。

TOP