美國俄亥俄州推出「個人隱私法草案」

  2021年7月13日,美國俄亥俄州(下稱俄州)副州長Jon Husted宣布推出《俄州個人隱私法》(Ohio Personal Privacy Act, OPPA,下稱本法),這是美國近期最新州級別的個人隱私保護法草案,並提出企業可資遵循隱私標準俾該州消費者隱私之保護。

  首先,本法草案除賦予該州消費者知悉權、近用權、刪除權外,更賦予資料銷售退出權(right to opt out sales)及不受歧視權(right to discrimination)。並於俄州境內規範三種企業:(一)年營收逾2,500萬美元;(二)單一年度內經手10萬名以上消費者個資;(三)年營收半數源自於個人資料銷售且經手2.5萬名以上消費者個資。

  惟所稱企業,排除如:州立機關或機構、受管制之金融機構及其附屬單位、實體或關係組織、高等教育機構等;至所稱消費者個資,則排除如:法規保護之個資(如健康資訊及紀錄、病患辨識資訊、人類受試者之個資及相關資訊、病患安全工作成果、個人信用等)、依法(如駕照法、家事法、醫療法及本法等)所得個資或依法授權得使用於公衛之資訊等。

  特別的是,如企業違反本法,消費者並無獨立訴訟權,其執法權專屬州總檢察長。因此,如本法日後通過並施行,無論對俄州企業抑或消費者權益之影響,均有待觀察。

相關連結
相關附件
你可能會想參加
※ 美國俄亥俄州推出「個人隱私法草案」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8740&no=67&tp=1 (最後瀏覽日:2025/11/18)
引註此篇文章
你可能還會想看
加拿大政府提交予國會《人工智慧資料法案》

  加拿大政府由創新、科學和工業部長(Minister of Innovation, Science and Industry)代表,於2022年6月16日提交C-27號草案,內容包括聯邦的私部門隱私權制度更新,以及新訂的《人工智慧資料法案》(Artificial Intelligence and Data Act, 下稱AIDA)。如獲通過,AIDA將是加拿大第一部規範人工智慧系統使用的法規,其內容環繞「在加拿大制定符合國家及國際標準的人工智慧設計、開發與應用要求」及「禁止某些可能對個人或其利益造成嚴重損害的人工智慧操作行為」兩大目的。雖然AIDA的一般性規則相當簡單易懂,但唯有在正式發布這部包含絕大多數應用狀況的法規後,才能實際了解其所造成的影響。   AIDA為人工智慧監管所設立的框架包含以下六項: (1)方法 以類似於歐盟《人工智慧法案》採用的方式,建立適用於人工智慧系統具「高影響力」的應用方式的規範,關注具有較高損害與偏見風險的領域。 (2)適用範圍 AIDA將適用於在國際與省際貿易及商業行動中,設計、發展或提供人工智慧系統使用管道的私部門組織。「人工智慧系統」的定義則涵蓋任何「透過基因演算法、神經網路、機器學習或其他技術,自動或半自動處理與人類活動相關的資料,以產生結果、做出決策、建議或預測」的技術性系統。 (3)一般性義務 I 評估及緩和風險的措施 負責人工智慧系統的人員應評估它是否是一個「高影響系統」(將在後續法規中詳細定義),並制定措施以辨識、評估與減輕使用該系統可能造成的傷害風險或具有偏見的結果。 II 監控 對該「高影響系統」負責的人員應建立準則,以監控風險緩解措施的遵守情況。 III 透明度 提供使用管道或管理「高影響系統」運作的人員應在公開網站上,以清晰的英語揭露   i 系統如何或打算如何使用。   ii 系統所生成果的類型及它所做出的決策、建議與預測。   iii 為辨識、評估與減輕使用該系統可能造成的傷害風險或具有偏見的結果,而制定的緩解措施。   iv 法規明定應揭露的其他訊息。 IV 記錄保存 執行受規範活動的人員應遵守紀錄保存要求。 V 通知 若使用該系統將導致或可能導致重大傷害,「高影響系統」的負責人應通知部門首長。 VI 匿名資料的使用 從事法案所規定的活動及在活動過程中使用或提供匿名資料的人員,必須依據規範制定關於(a)資料被匿名化處理的方式(b)被匿名化資料的使用與管理,兩方面的措施。 (4)部長命令 部門首長可以透過命令要求(a)製作紀錄(b)從事審計或聘請一位獨立的審計師執行(c)成立一個專責執行審計程序的組織(d)成立一個在有理由相信「高影響系統」之使用可能造成急迫重大傷害風險時負責進行終止或准許的組織。 (5)行政管理 AIDA為部門首長制定一項,可指定其所管轄部門中一名高級官員為「人工智慧與資料專員」的權利,其職責在協助部門首長管理與執行AIDA。 (6)罰則 違反AIDA規範之罰則主要為按公司、個人之收入衡量的罰款。特定嚴重狀況如以非法方式取得人工智慧訓練用資料、明知或故意欺騙大眾造成嚴重或心理傷害或財產上重大損失,亦可能判處刑事監禁。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

印度對TK( Traditional Knowledge傳統知識 )保護提出的建議修正案

  近年來許多先進國家的藥廠或是生技公司紛紛到生物資源豐富的國家從事生物探勘活動,希望可以尋找合適的生技產品候選者 (candidate) ,也因此產生許多不當佔有的生物盜竊 (biopiracy) 事件。   由於印度本身在 2002 年專利法修正時,特別規定生技發明之專利申請者若使用生物物質 (biological material) ,應揭露其地理來源 (source of geographical origin) ,未揭露其來源地或提供錯誤資訊者,則構成專利撤銷之理由; 2005 年的專利法修正的重點之一為「加強專利授予前異議 (pre-grant opposition) 機制」,意即未揭露生物物質之來源地或提供錯誤資訊者,或者申請專利之權利內容含有傳統知識者,可提出異議之事由。   目前國際間針對是否應強制規定申請人應揭示其來源地等仍無共識。從 2001 年的杜哈發展議程的談判會議結果即可知,由於該談判採取 「單一承諾( Single Undertaking )」模式且可從不同議題間相互掛勾,加上開發中及低度開發會員採取結盟方式來壯大談判立場,在某些關鍵議題與美國、歐盟等主要會員國形成抗衡局面。 開發中國家對於 TRIPs 第 27 條第 3 項 b 款的審議特別在乎,認為 TRIPs 協定應該修訂應納入上述的揭露需求外,還必須提供事先告知且同意 (prior informed consent) ,以及因該專利而獲取的利益與來源地分享之證明。   因此,印度提出修正 TRIPs 協定的建議,強制會員國必須改變內國法律,規定專利申請者必須揭露其發明所使用的生物物質來源,並希望能在今年 12 月香港部長會議裡討論。

美國尋求ITC調查營業秘密盜用案件逐年增加

  近年來透過美國國際貿易委員會(International Trade Commission,簡稱ITC)調查營業秘密盜用的案件逐年增加,從2018 年僅有2件到2021年已增加至9件,此現象可能與疫情期間大量員工離職流動有關,預期2022年會有更多員工流動的情況,也將使企業面臨更大的營業秘密盜用風險。   雖然過往熟知ITC是專利糾紛的戰場,但ITC對於構成營業秘密盜用的「不公平行為」也有管轄權。尋求ITC營業秘密盜用調查和傳統聯邦或州法院訴訟相比的好處包括:(1) ITC可管轄在發生在美國以外的營業秘密盜用行為、(2) ITC調查時間短,平均在15-18個月會做出處置、(3) 向ITC尋求救濟時間未有限制,聯邦或州法院則會要求在發現或應該發現營業秘密盜用行為起3-5年內應提出。   若ITC對於營業秘密盜用調查成立,請求人可取得排除令(exclusion order)禁止因盜用營業秘密產生的商品進入美國,也可取得制止令(cease-and-desist order)停止已在美國的被訴產品銷售。雖然ITC不能提供金錢賠償,但企業可同時向聯邦或州法院提出訴訟請求金錢賠償,且與專利案件不同,ITC關於營業秘密調查的勝利對於尋求金錢賠償的地方法院訴訟具有排他性影響(preclusive effect)。   因此,當面臨營業秘密盜用者不在美國或需要在短時間取得調查結果的情況,尋求ITC營業秘密盜用調查對企業會是有利的做法。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

TOP