日本總務省暫緩《電波法》「取消無線電臺外資限制」修正案

  現行日本《電波法》第5條第1項規定,具有以下要件者不予頒發無線電臺執照,一、非日本國籍者;二、外國政府及其代表;三、外國公司或集團;四、法人、組織,其代表為前三款所列之人員,或者佔其管理人員三分之一以上或三分之一以上表決權之法人或組織。

  前日本首相菅義偉內閣時期,總務省於今年6月召開專家會議,認為衛星通訊領域將帶來災害預測、交通遙測及智慧農業等各領域的新興應用,太空新創產業發展充滿了無限的可能性,為避免新創公司產生募集資金之困難,擬修正《電波法》,刪除「外資具三分之一以上表決權之法人或組織不予頒發無線電臺執照」之限制,以促進太空衛星新創產業發展。

  然而,日本新首相岸田文雄內閣於今年10月15日由總務省舉行專家會議,提出不同見解,認為應就各無線通訊產業訂定不同程度之外資監管政策,如地區型無線廣播電臺產業、商業電視頻道產業及衛星通訊產業等,分別就其對經濟安全所涉層面進行不同程度之外資管制,故總務省決定暫緩《電波法》修正案,將持續蒐集專家意見進行研議。

相關連結
※ 日本總務省暫緩《電波法》「取消無線電臺外資限制」修正案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8751&no=67&tp=1 (最後瀏覽日:2025/12/03)
引註此篇文章
你可能還會想看
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

Ericsson專利訴訟新打手—專利蟑螂

  據報載,瑞典電信鉅業愛立信公司(Ericsson)已經將超過兩千筆的專利組合出售給Unwired Planet公司,此舉將更有利於Unwired Planet公司在智慧型手機的侵權官司當中繼續爭訟。此外,Unwired Planet公司宣稱Ericsson公司所移轉的2185件專利當中,包括美國及他國之專利權、專利申請案件給Unwired Planet公司,在這些移轉的專利組合當中,多數的技術都是與2G、3G,以及長期演進技術(Long Term Evolution,簡稱LTE)的專業技術領域有關。   Unwired Planet公司成立於1996年,同時宣稱自己為”行動網路的發明家”。透露說為了這次的合作,從公司成立時不久,即開始與授權公司以及Ericsson公司接洽。公司高層並指出,透過與Ericsson公司的合作,事實上已經傳達了高值的社會價值,反映出我們所承諾要保護並展現創新的觀點。   Unwired Planet公司是一間藉由把持專利權,以在各科技公司間興頌,並從中獲得利益的公司,通常被稱為專利蟑螂(patent troll)。

加拿大隱私專員呼籲提升加拿大人在美國之隱私保護

  加拿大隱私專員表示,其國人在美國雖享有一些隱私保護,但該保護主要係依賴不具法律效力之行政協議,因而相當脆弱。   隱私專員Daniel Therrien在一封致加拿大司法部長、公共安全部長及國防部長的公開信中,請求加拿大政府官員們向其對口之美國政府部門,要求藉由將加拿大列入美國國會去(2016)年通過之「司法賠償法案(Judicial Redress Act of 2015)」指定國家清單,以強化對其國人之隱私保護。隱私專員並表示,國人關切並請加拿大隱私專員辦公室(OPC)針對美國總統唐納.川普(Donald John Trump)所發布之行政命令進行影響評估,因其將排除非美國公民及合法永久居民隱私權法中關於個人可資識別資料之保護。   倘若加拿大能如同歐洲聯盟(European Union)及26個歐洲國家一般,於今年初時被列入前述指定清單,則其公民即可透過美國法院之強制執行,獲得隱私保障。此外亦可同時強化行政協議,如:美加邊境安全行動計劃(Canada-U.S. Beyond the Border Action Plan)及其聯合隱私聲明原則(Joint Statement of Privacy Principles)給予加拿大人之保護。   聯合隱私聲明原則涵括12項,其重要者有: 1.善盡一切合理努力,確保個人資料之正確性,以及後續請求查閱及更正錯誤之權利。 2.個人資料適當安全維護措施。 3.蒐集個人資料之相關性及必要性。 4.當事人認為其隱私受侵害時,得受繼有國家當局之賠償。 5.公務機關之有效監督。   縱算美國隱私權法自始即從未適用於加拿大人,且前開行政命令亦未改變現況,該命令仍突顯出「在南邊境上對加拿大人個人資料保護的顯著差距」。 「作為一個長期盟友以及密切的貿易夥伴,加拿大應要求被給予和那些經指定列入清單之歐洲國家相同程度之保護。」

歐盟委員會就資料法草案提出修改報告

於2023年2月28日,歐盟議會( European Parliament )工業、研究和能源委員會( Committee on Industry, Research and Energy )就2022年公開之資料法草案( Data Act )提出修正報告,該報告支持資料法草案賦予使用者訪問、使用並共享其資料的權利,以發揮出工業資料的經濟潛力,並就資料法草案內容提出修改之報告(以下簡稱修改草案)。 以下就修改草案對於資料持有者權利之影響摘要說明如下: 1、對資料持有者之營業秘密的保護,資料持有者就其有營業秘密之資料,能要求使用者保護該資料的秘密性,並要求使用者要採取一定之保密措施,若使用者未能執行該保密措施,資料持有者可暫停資料共享; 2、資料持有者提供資料之對象為公司時,可對其請求之合理補償,該合理補償包含產生/處理資料與提供資料等讓資料可用的成本,惟該資料成本若可與其他資料請求分攤,則不應由單一使用者支付全部費用,且對於小/微型企業,不得請求超過提供資料的直接成本; 歐盟為使工業資料可充分發揮其效益,資料法草案旨在推動資料共享並建立相對的遊戲規則,此次修改草案從營業秘密與成本補償的角度切入,以保障資料持有者權利,該修改草案預計於3月中全體會議上進行表決,其規範對象包含有在歐盟提供物聯網/雲端產品或服務之企業,國內企業亦會因網路跨境性質而受影響,可參考資策會科法所所發布之重要數位資料治理暨管理制度規範(EDGS)預做準備。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP