2021年11月8日,世界智慧財產權組織(World Intellectual Property Organization,簡稱WIPO)發布2021年《世界智慧財產權指標報告》(World Intellectual Property Indicators Report,簡稱WIPI)。報告指出全球的商標申請在2020年成長了13.7%、專利成長1.6%、外觀設計成長2%。WIPO執行長表示:「WIPO世界智慧財產權指標報告證實,儘管世界經濟出現數十年來最嚴重的緊縮,但智財權申請——一個強而有力的創新指標——在疫情期間展現出非凡的復原力」。本報告以2020年度,蒐集自世界各地150個官方智財組織、以及WIPO的申請、註冊和延展的統計數據為依據,分析全球智慧財產權活動,範圍涵蓋專利、新型、商標、工業外觀設計、微生物、植物品種保護和地理標誌。
WIPO每年皆會收集和分析官方智財統計數據,發布年度WIPI報告,為政策制定者、商業領袖、投資人、學者和其他欲了解、分析智財生態宏觀趨勢的人提供全球智財資訊。
據韓國媒體於2024年2月13日報導指出,越來越多韓國企業面臨因為營業秘密的外洩而導致企業虧損的問題,鑒於目前的韓國海關扣留制度(Customs Retention System)僅適用於對外公開的智慧財產權(如商標與專利),多方呼籲應將侵害企業內部營業秘密之侵權商品納入海關法的管制中,甚至有政黨提出法案,建議擴大海關法的適用範圍,禁止侵害韓國企業營業秘密的商品進出口。 該篇報導藉一起正在調查中的營業秘密侵害案件為例,涉案之韓國槍械零件製造商,以「前員工在職時,透過個人電子郵件與客戶進行業務往來,取得企業營業秘密資訊(包括設計圖),並於離職後,創設一間A企業並涉嫌出口利用獲得之營業秘密生產的侵權商品」為由,於2023年向該名離職員工提起訴訟,該案後經政府機關調查,最終於2024年2月底進行首次聽證會。 針對上述案件,國防產業相關人士(Defense Industry Insiders)指出,因為韓國海關僅得依法禁止專利、商標之侵權商品進出口,營業秘密的侵權商品在爭議案件調查期間仍可持續進出口。對此,韓國政黨提出了一項法案(下稱系爭法案),旨在修改海關法,從而允許海關扣留「侵害營業秘密的商品」以及「侵害國家指定的先進工業和國防技術的商品」。 該篇報導也指出,雖韓國海關局對於修法基本上持贊成態度,但也有相關疑慮,如:可能會因為海關扣留範圍的擴大被濫用於壓制競爭行為;相較於容易識別的商標侵權案,營業秘密的範圍很廣,界線模糊,可能造成海關難以立即識別侵權。 綜上,即使系爭法案有利於營業秘密侵權救濟,但仍有上述疑慮有待解決,故本議題仍值得持續關注。而本文仍建議相較於事後救濟,企業可參考資策會科法所發布之「營業秘密保護管理規範」,透過PDCA循環建置系統性營業秘密規範,協助企業從事前防範營業秘密侵權風險,始為企業長久經營之計。 本文同步刊登於TIPS網(https://www.tips.org.tw)
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
國際海事組織建立海上自駕船舶監理架構國際海事組織(International Maritime Organization, IMO)所屬之海事安全委員會(Maritime Safety Committee, MSC)於2018年12月召開第100屆大會(MSC 100),本屆會議批准海上自駕船舶監管架構,要點如下: 一、盤點相關國際海事組織規範,以確認該規範: 是否適用於海上自駕船舶(Maritime Autonomous Surface Ships, MASS)及是否妨礙其運作與航行;或 是否適用於海事海上自駕船舶且不妨礙其運作;或 是否適用於海事海上自駕船舶且不妨礙其運作,但需要進一步調修。 MSC預計相關規範之盤點結論將於2019年6月前完成,並期待於2020年完成相關法規調適,盤點範圍包括:安全規範(SOLAS)、碰撞規範(COLREG)、載重線與穩度(Load Lines Convention)、海員與漁夫訓練(STCW, STCW-F)、搜尋與救援(SAR)、噸位丈量(Tonnage Convention)、貨櫃安全(CSC)、以及特殊貿易客船(SPACE STP, STP)。 二、 定義海上自駕船舶之自動化等級: 等級1:配備有自動化處理與決策支援船舶,海員仍於船上對船舶系統及相關功能進行控制。某些功能可以於無人監控下自動化運作,但船員於船舶上仍應於自動駕駛系統發生故障時進行人為介入。 等級2:有船員隨船之遙控控制船。該船舶係由岸上人員控制,惟船上之船員可於必要時介入並接手運作該船舶之自動駕駛系統與功能。 等級3:未有船員隨船之遙控控制船,該船舶由岸上人員控制。 等級4:全自動化船舶,船舶之自動駕駛系統可自行做出決策並反應。 此外,MSC預計提出海事海上自駕船舶航行指引(Guidelines on MASS trials),該指引將於下一會期(MSC101)之國際海事委員會會議進行草擬。