德國聯邦專利法院在2021年11月中旬對美國發明人Stephen Thaler(後稱Dr. Thaler)所開發之AI系統(DABUS)是否能成為專利發明人作出判決,儘管AI在研發過程中協助發現問題並解決問題,法院仍認為專利發明人必須為自然人,但特別補充說明這項發明確實有得到AI的幫助。
Dr. Thaler及其法律團隊將該發明在各國進行專利申請。盤點各國智財局或法院之考量:美國專利商標局(USPTO)強調發明人應以自然人為由排除這類案件;儘管英國智財局(UKIPO)認同DABUS富有創新,卻否認其為合法發明人,不過認為有必要檢視AI技術帶給現存專利制度的挑戰,並已啟動針對AI發明之法律改革計畫;至於歐洲專利局(EPO)以不符合自然人或實體等資格而核駁這類案件,然而上訴結果將於12月下旬作出判決。
惟澳洲聯邦法院在7月底逆轉做出法律並未禁止以AI為發明人而提出專利申請之判決,這也是繼南非允許AI作為發明人而取得專利權之後的第二個案例。
根據各國智財局、世界智慧財產權組織(WIPO)與法院多將智慧財產係來自於心智創作,卻未定義該心智創作是來自於人類或AI,可預見非人類主體將可被視為發明人並授予智慧財產權。此外,現行智財法律也有重新檢視與定義之必要性,包括釐清AI演算法與AI開發者之角色以重新定義發明人資格或所有權人等議題。
日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
FCC公佈第三次美國寬頻測量報告延續過去兩年針對全國寬頻網路服務進行檢視,FCC在2013年2月公布第三次「美國寬頻測量報告」(Measuring Broadband America)。這份報告有別於過去,將受測技術從DSL、有線電視與光纖,涵蓋至衛星寬頻,使資訊更加多元。此外,網路服務供應商(Internet Service Provider,ISP)在今年尖峰時段(工作日晚間7點至9點)提供寬頻實際速度與網速的契合率達97%,而較2011、2012年進步,因此,這份報告的另一個重點,便是提出寬頻速度與廣告相符的三大關鍵: 1.ISP業者盡力改善網路效能(Network Performance),而非調降牌告價(Speed Tiers )。 2.民眾接納更快速的網路意願,更甚過往。FCC指出,消費者訂閱網速的層級,逐漸從每秒14.3Mbps ,發展至15.6 Mbps。至於,使用網速低於1Mbps、或是1Mbps到3Mbps的民眾,近年也逐步採用更高速的網路。 3.衛星寬頻的進步:雖然,衛星技術在傳輸上仍有延遲的缺陷,但是,有近90%的民眾於尖峰時段,得到超過業者寬頻廣告速度的140%(業者宣稱具有12Mbps),使消費者感受不出網路尖峰期。 為使2015年實現50Mbps寬頻網路具有1億家戶可連結,美國逐步發展國家寬頻計畫(National Broadband Plan,NBP)。FCC避免寬頻廣告速度與實際速度不符影響NBP發展,未來將要求ISP業者對於網路牌告負起責任(Accountability),藉此增加市場競爭性與提高資訊透明度。以「美國寬頻測量報告」為例,藉由委員會、產業與其他利益相關人合作的方式,促進資訊的透明,使消費者在取得訊息後,有能力做出正確的決定,便是一種提高透明度的方式。 雖然,FCC認為寬頻網路進步與民眾採納較高速的網路,對於市場發展是一項利多,但部分輿論卻認為這與2011年12月31日FCC網路接取報告(Internet Access Report)結論相距甚遠。根據報告顯示,美國有高達42%的民眾下載速度不到3 Mbps、上傳速度不到769 kbps,而這與「美國寬頻測量報告」結果,確實大相逕庭。無論如何,可以窺見FCC視民眾使用意願與網路基礎建設同等重要,因此,如何增加消費者選擇較高速的網路,將是市場未來發展的關鍵。
德國資料保護會議通過「哈姆巴爾宣言」,針對人工智慧之運用提出七大個資保護要求德國聯邦及各邦獨立資料保護監督機關(unabhängige Datenschutzaufsichtsbehörden)共同於2019年4月3日,召開第97屆資料保護會議通過哈姆巴爾宣言(Hambacher Erklärung,以下簡稱「Hambacher宣言」)。該宣言指出人工智慧雖然為人類帶來福祉,但同時對法律秩序內自由及民主體制造成巨大的威脅,特別是人工智慧系統可以透過自主學習不斷蒐集、處理與利用大量個人資料,並且透過自動化的演算系統,干預個人的權利與自由。 諸如人工智慧系統被運用於判讀應徵者履歷,其篩選結果給予女性較不利的評價時,則暴露出人工智慧處理大量資料時所產生的性別歧視,且該歧視結果無法藉由修正資料予以去除,否則將無法呈現原始資料之真實性。由於保護人民基本權利屬於國家之重要任務,國家有義務使人工智慧的發展與應用,符合民主法治國之制度框架。Hambacher宣言認為透過人工智慧系統運用個人資料時,應符合歐盟一般資料保護規則(The General Data Protection Regulation,以下簡稱GDPR)第5條個人資料蒐集、處理與利用之原則,並基於該原則針對人工智慧提出以下七點個資保護之要求: (1)人工智慧不應使個人成為客體:依據德國基本法第1條第1項人性尊嚴之保障,資料主體得不受自動化利用後所做成,具有法律效果或類似重大不利影響之決策拘束。 (2)人工智慧應符合目的限制原則:透過人工智慧系統蒐集、處理與利用個人資料時,即使後續擴張利用亦應與原始目的具有一致性。 (3)人工智慧運用處理須透明、易於理解及具有可解釋性:人工智慧在蒐集、處理與利用個人資料時,其過程應保持透明且決策結果易於理解及可解釋,以利於追溯及識別決策流程與結果。 (4)人工智慧應避免產生歧視結果:人工智慧應避免蒐集資料不足或錯誤資料等原因,而產生具有歧視性之決策結果,控管者或處理者使用人工智慧前,應評估對人的權利或自由之風險並控管之。 (5)應遵循資料最少蒐集原則:人工智慧系統通常會蒐集大量資料,蒐集或處理個人資料應於必要範圍內為之,且不得逾越特定目的之必要範圍,並應檢查個人資料是否完全匿名化。 (6)人工智慧須設置問責機關進行監督:依據GDPR第12條、第32條及第35條規定,人工智慧系統內的控管者或處理者應識別風險、溝通責任及採取必要防範措施,以確保蒐集、處理與利用個人資料之安全性。 (7)人工智慧應採取適當技術與組織上的措施管理之:為了符合GDPR第24條及第25條規定,聯邦資料保護監督機關應確認,控管者或處理者採用適當的現有技術及組織措施予以保障個人資料。 綜上所述,Hambacher宣言內容旨在要求,人工智慧在蒐集、處理及利用個人資料時,除遵守歐盟一般資料保護規則之規範外,亦應遵守上述提出之七點原則,以避免其運用結果干預資料主體之基本權利。
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。