從美國政府責任署建議國防部應改善其處理智慧財產的方式初探美國國防部之智財管理

從美國政府責任署建議國防部應改善其處理智慧財產的方式初探美國國防部之智財管理

資訊工業策進會科技法律研究所
2022年2月15日

  根據美國政府責任署(U.S. Government Accountability Office,下稱GOA)於去(2021)年12月發布的報告指出,美國國防部(U.S. Department of Defense,下稱DOD)對智慧財產的管理能力不足,可能降低任務準備程度並導致維運軍武的成本飆升[1]。本文將簡介GOA報告的發現,聚焦於DOD的智財管理情況,藉此一窺美國國防部的智財管理模式。

壹、事件摘要

  美國國會於2018年通過《國防授權法案》(National Defense Authorization Act,簡稱NDAA),裁示DOD建立智財取得及授權政策,DOD據此訂定其智財指令、規劃智財權責單位、人員及相關培訓機制,嗣後國會於2021年委請GAO檢視DOD之智財指令及其執行情況。

貳、重點說明

一、DOD的智財指令

  DOD依據以下智財相關法規,設定其智財指令,如:使小型企業、大學和其他非營利組織可保留其發明之專利權的《拜杜法》(Bayh-Dole Act)[2]、授予無論規模大小所有聯邦締約方全部或部分由聯邦資金所獲得的專利權之12,591號行政命令[3],以及要求DOD應訂定相關規範以解決和締約方間技術資料的相關權利之《國防採購改革法案》(Defense Procurement Reform Act)[4]等,並強調六項核心原則[5]

1.將智慧財產權規劃整合到採購策略中,以考量對競爭力和可負擔性的長期影響。

2.確保採購專業人員具備履行公務所需的相關智財知識,以支援智財採購規劃期間內進行關鍵的跨職能協調。

3.對智財可交付成果和相關授權進行特別協商,相較標準授權能更有效地平衡DOD和產業界間的利益。

4.就預期智財和維運目標與產業界進行明確有效的溝通。

5.尊重和保護私部門和政府資助的智慧財產權。

6.政府必須確保締約方所交付之智財成果和有相應的授權。

二、GAO檢視DOD之智財指令執行結果

  應國會要求,GAO對DOD的智財指令進行通盤檢視,並對智財權責單位、人員及負責培訓之機構展開調查,訪談相關人員指令的實際執行情況,其檢視結果如下:

(一)DOD的智財指令不足以促進其取得智財的製程細節或處理資料權利之能力

  DOD智財指令雖整合取得、授權智財的相關法規和指引等要求,並強調其核心原則,然該指令和DOD其它相關的內部指令仍未有更明確的內容可解決取得細部製程或處理資料權利的問題。DOD通常會為其新銳軍武器系統-包含電腦軟體、技術資料、用戶手冊等取得或註冊智財權,而DOD智財指令所指的技術資料,是包括任何科學或技術性質的記錄資訊,如:產品設計或維護資料和電腦軟體檔案(含:執行程式碼、開源碼、程式碼清單、設計細節、流程、流程圖等);但常未同步取得用於運行和維護武器系統的智財,如:細部製程或技術資料等[6],倘若未及早取得或獲得相關授權,可能影響軍武系統的操作和維護,從而影響武器的競爭力,並增加管理成本[7]

  實際上,GAO已接獲因技術資料取得問題而對任務有不良影響的報告:2021年7月F-35計劃因維修供應商取得的技術資料不足以滿足維護需求,使關鍵的引擎維修時間比預期的更久;2020年3月部分海軍艦艇計劃的維護作業也因缺乏技術資料出問題,而上述情況若在計畫前期就確認包含技術資料和細部製程等所需智財,並在採購過程中及早規劃取得,可因此節省後續衍生的數十億美元維護成本[8]

(二)DOD尚未為智財人員訂定完善的策略、人員配置規劃和投注足夠的資源,以充分履行智財指令所規定的廣泛職責

  根據GOA的調查與訪談相關人員,智財人員在以下情況都面臨不確定性:

1.資金和人員配置

  DOD目前計劃在2023財會年度前,為智財主任及其在國防部長辦公室(Office of the Secretary of Defense,下稱OSD)的團隊提供五個職位的資金,但其中四個為臨時職位,這可能在招聘人才的過程中造成反效果,不利於未來的人員配置。

2.連結其他計劃專家支援不足之處

  OSD的智財人員希望DOD中其他計畫的智財專家庫能提供支援,協助訂定智財策略並與承包商進行談判等事宜,但DOD尚未針對 OSD智財團隊將如何和其他專家合作提出具體作法。

3.專業知識

  DOD的智財指令指出智財人員應該具備:採購、擬定契約、工程學、法律、後勤、財務分析以及估值等領域的專業知識,但受訪談的人員表示,該部門目前在智財權估值和財務分析這兩個關鍵領域仍有不足,仍須進行補強[9]

(三)智財培訓涵蓋多項活動但未安排優先順序,且未具體確定哪些人員應該接受培訓

  DOD的智財培訓由其設立的美國國防武獲大學(Defense Acquisition University,又譯為國防軍需大學,下稱 DAU)執行,該大學專為國防相關之政府人員、承包商提供採購、技術和後勤等專業培訓[10]。為改善智財培訓,DAU展開為5年期的智財策略計畫,計有60多項活動待執行,但該策略計劃缺乏重點,沒有排出活動的優先順序,也未具體提出DOD的哪些智財人員應該接受培訓[11]

(四)DOD須致力發展追蹤已取得/授權智財之後續使用情況的能力

  DOD目前的智財指令指示相關政府單位須管理智財相關的契約及智財文件,以避免在採購智財及其相關授權時重複採購,或隨時間流逝而喪失智財權,然而根據訪談結果,相關人員表示DOD採購極大量的智財或相關授權,但不具備追蹤各個智財獲授權使用情形的能力[12]

三、GAO對DOD的建議

  GAO彙整其檢視DOD智財指令執行情況的結果後,對DOD提出下列四個建議[13],建議內容不外乎是指定與智財管理相關的重要項目須指定負責人,且該負責人須為對應智財相關單位的較高管理階層,確保待改善項目有監督與執行者。

(一)完善智財指南

  採購及維護次長(The Under Secretary of Defense for Acquisition and Sustainment)應確保DOD智財指南已闡明DOD人員將如何取得細部製程或技術資料。

(二)確保跨部門合作與資源連結

  國防部長(The Secretary of Defense)應確保部長辦公室和各部門所需的合作、人員配置和資源,以連結各計畫智財相關專家、人員。

(三)確認智財活動優先順序

  採購助理部長(Assistant Secretary of Defense for Acquisition)應確保智財主任(Director of the IP Cadre)與DAU主席合作,為DAU在2023年至2025年間主責與智財相關活動確定優先順序。

(四)確保智財培訓效益

  採購助理部長(Assistant Secretary of Defense for Acquisition)應確保智財主任訂定補充指引,以協助部門負責人和採購職業管理主任(Director of Acquisition Career Management,DACM)確定國防部人員在關鍵專業領域接受之智財培訓和取得的證書能使其有最大的獲益。

參、事件評析

  綜觀GAO的檢視結果,雖然DOD的智財管理仍有改善空間,但以足見美國聯邦政府對其智財管理之重視程度,不僅指示部會自行管理智財,更透過部會外的公正單位,從規範到組織實際執行情況進行通盤檢視;而部會內部對於智財管理的程度,已經從訂定和整合智財相關規範,進一步到落實在日常任務中,不只重視部會所需技術本身的智財取得或保護,更欲推進到策略計劃前期,將維護軍武相關的細部製程和技術資料等相關內容及權利也納入採購範圍,甚至為此盤點智財所需的專業能力、規劃培訓專門人員,以促進智財管理的量能,其對智財管理深化及重視的程度值得我國借鏡。

 

 

[1] GAO, Defense Acquisitions: DOD Should Take Additional Actions to Improve How It Approaches Intellectual Property, (Nov. 30, 2021), available at https://www.gao.gov/products/gao-22-104752  (last visited Feb. 7, 2022)

[2] The Patent and Trademark Law Amendments Act of 1980 (Bayh-Dole Act), 35 U.S.C.§§ 200–211, 301–307.

[3] President’s Memorandum to the Heads of the Executive Departments and Agencies,Government Patent Policy (Feb. 18, 1983); Exec. Order No. 12,591, § 1(b)(4), 52 Fed. Reg. 13,414 (Apr. 10, 1987)

[4] Defense Procurement Reform Act, 1984, Pub. L. No. 98-525, § 1201.

[5] Supra note 1, 17-18.

[6] Id., 7, footnote 21.

[7] Id., 1.

[8] Id., 1.

[9] Id., 24-28.

[10] DAU, About DAU, at https://www.dau.edu/about (last visited Feb., 7, 2022)

[11] Id., 29-30.

[12] Id., 32-33.

[13] Id., 33-34.

 

 

相關連結
你可能會想參加
※ 從美國政府責任署建議國防部應改善其處理智慧財產的方式初探美國國防部之智財管理, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8780&no=57&tp=1 (最後瀏覽日:2026/02/03)
引註此篇文章
你可能還會想看
社群媒體發展網路不當言論管理機制之趨勢觀察

澳洲新南威爾斯政府將推動創新採購與擴大監理沙盒適用範圍

  澳洲經濟核心所在之新南威爾斯州(首府雪梨)於2016年11月30日提出新南威爾斯創新戰略(The NSW Innovation Strategy),嘗試整合政府公部門、營利組織、非營利組織、教育及研究機構、社群或個人共同面對新的經濟、社會、環保議題之挑戰,藉由投入新型態的公共投資(the new forms of public investment),協助發明與創新者得以將他們好的創意轉換為成功的商品與服務。此外,不僅要發展未來產業創造工作機會,更要為此預先儲備能夠發揮高科技發展所需技能之人力資源。   基此,新南威爾斯政府的創新戰略將著重於下列四項目標的達成: (1)政府成為創新領導者(Government as an innovation leader) (2)促進和運用研究發展(Fostering and leveraging research and development) (3)未來技能養成(Skills for the future) (4)創業者的家園(A home for entrepreneurs)   同時,具體執行方法,在機制面上首先將啟動新南威爾斯創新窗口服務(NSW Innovation Concierge Service),與澳洲跨部會創新委員會協調運作,以確保重要意見並未遺漏,並且讓專家及決策者可考量到各種可能。   而其他執行方法中,在法制面上影響較大者是在澳洲政府推動金融科技之監理沙盒制度的基礎上,嘗試擴大適用範圍不限於金融業之監理法令,可及於創新產業之法令試作。另外,也將針對採購規範進行修正,使政府與民間可以更便於運用政府採購促進產業發展與扶助中小企業,同時滿足政府提供公共服務之需求。更甚者,將推動對創新商品及服務的政府採購,藉由提供一定市場需求,穩定新創科技及業者之發展。

G7第四屆資料保護與隱私圓桌會議揭示隱私保護新趨勢

G7第四屆資料保護與隱私圓桌會議揭示隱私保護新趨勢 資訊工業策進會科技法律研究所 2025年03月10日 七大工業國組織(Group of Seven,下稱G7)於2024年10月10日至11日在義大利羅馬舉辦第四屆資料保護與隱私機構圓桌會議(Data Protection and Privacy Authorities Roundtable,下稱圓桌會議),並發布「G7 DPAs公報:資料時代的隱私」(G7 DPAs’ Communiqué: Privacy in the age of data,下稱公報)[1],特別聚焦於人工智慧(AI)技術對隱私與資料保護的影響。 壹、緣起 由美國、德國、英國、法國、義大利、加拿大與日本的隱私主管機關(Data Protection and Privacy Authorities, DPAs)組成本次圓桌會議,針對數位社會中資料保護與隱私相關議題進行討論,涵蓋「基於信任的資料自由流通」(Data Free Flow with Trust, DFFT)、新興技術(Emerging technologies)、跨境執法合作(Enforcement cooperation)等三大議題。 本次公報重申,在資通訊技術主導的社會發展背景下,應以高標準來審視資料隱私,從而保障個人權益。而DPAs作為AI治理領域的關鍵角色,應確保AI技術的開發和應用既有效且負責任,同時在促進大眾對於涉及隱私與資料保護的AI技術認識與理解方面發揮重要作用[2]。此外,公報亦強調DPAs與歐盟理事會(Council of Europe, CoE)、經濟合作暨發展組織(Organisation for Economic Co-operation and Development, OECD)、亞太隱私機構(Asia Pacific Privacy Authorities, APPA)、全球隱私執行網路(Global Privacy Enforcement Network, GPEN)及全球隱私大會(Global Privacy Assembly, GPA)等國際論壇合作的重要性,並期望在推動資料保護與建立可信賴的AI技術方面作出貢獻[3]。 貳、重點說明 基於上述公報意旨,本次圓桌會議上通過《關於促進可信賴AI的資料保護機構角色的聲明》(Statement on the Role of Data Protection Authorities in Fostering Trustworthy AI)[4]、《關於AI與兒童的聲明》(Statement on AI and Children)[5]、《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》(Reducing identifiability in cross-national perspective: Statutory and policy definitions for anonymization, pseudonymization, and de-identification in G7 jurisdictions)[6],分別說明重點如下: 一、《關於促進可信賴AI的資料保護機構角色的聲明》 繼2023年第三屆圓桌會議通過《關於生成式AI聲明》(Statement on Generative AI)[7]後,本次圓桌會議再次通過《關於促進可信賴AI的資料保護機構角色的聲明》,旨在確立管理AI技術對資料保護與隱私風險的基本原則。G7 DPAs強調許多AI技術依賴個人資料的運用,這可能引發對個人偏見及歧視、不公平等問題。此外,本聲明中還表達了擔憂對這些問題可能透過深度偽造(Deepfake)技術及假訊息擴散,進一步對社會造成更廣泛的不良影響[8]。 基於上述考量,本聲明提出以下原則,納入G7 DPAs組織管理的核心方針[9]: 1. 以人為本的方法:G7 DPAs應透過資料保護來維護個人權利與自由,並在AI技術中提供以人權為核心的觀點。 2. 現有原則的適用:G7 DPAs應審視公平性、問責性、透明性和安全性等AI治理的核心原則,並確保其適用於AI相關框架。 3. AI核心要素的監督:G7 DPAs應從專業視角出發,監督AI的開發與運作,確保其符合負責任的標準,並有效保護個人資料。 4. 問題根源的因應:G7 DPAs應在AI的開發階段(上游)和應用階段(下游)找出問題,並在問題擴大影響前採取適當措施加以解決。 5. 善用經驗:G7 DPAs應充分利用其在資料領域的豐富經驗,謹慎且有效地應對AI相關挑戰。 二、《關於AI與兒童的聲明》 鑒於AI技術發展可能對於兒童和青少年產生重大影響,G7 DPAs發布本聲明表示,由於兒童和青少年的發展階段及其對於數位隱私的瞭解、生活經驗有限,DPAs應密切監控AI對兒童和青少年的資料保護、隱私權及自由可能造成的影響程度,並透過執法、制定適合年齡的設計實務守則,以及發佈面向兒童和青少年隱私權保護實務指南,以避免AI技術導致潛在侵害兒童和青少年隱私的行為[10]。 本聲明進一步闡述,當前及潛在侵害的風險包含[11]: 1. 基於AI的決策(AI-based decision making):因AI運用透明度不足,可能使兒童及其照顧者無法獲得充足資訊,以瞭解其可能造成重大影響的決策。 2. 操縱與欺騙(Manipulation and deception):AI工具可能具有操縱性、欺騙性或能夠危害使用者情緒狀態,促使個人採取可能危害自身利益的行動。例如導入AI的玩具可能使兒童難以分辨或質疑。 3. AI模型的訓練(Training of AI models):蒐集和使用兒童個人資料來訓練AI模型,包括從公開來源爬取或透過連線裝置擷取資料,可能對兒童的隱私權造成嚴重侵害。 三、《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》 考慮到個人資料匿名化、假名化及去識別化能促進資料的創新利用,有助於最大限度地減少隱私風險,本文件旨在整合G7成員國對於匿名化、假名化與去識別化的一致理解,針對必須降低可識別性的程度、資訊可用於識別個人的程度、減少可識別性的規定流程及技術、所產生的資訊是否被視為個人資料等要件進行整理,總結如下: 1. 去識別化(De-identification):加拿大擬議《消費者隱私保護法》(Consumer Privacy Protection Act, CPPA)、英國《2018年資料保護法》(Data Protection Act 2018, DPA)及美國《健康保險可攜性及責任法》(Health Insurance Portability and Accountability Act , HIPAA)均有去識別化相關規範。關於降低可識別性的程度,加拿大CPPA、英國DPA規定去識別化資料必須達到無法直接識別特定個人的程度;美國HIPAA則規定去識別化資料須達到無法直接或間接識別特定個人的程度。再者,關於資料去識別化的定性,加拿大CPPA、英國DPA認定去識別化資料仍被視為個人資料,然而美國HIPAA則認定去識別化資料不屬於個人資料範疇。由此可見,各國對去識別化規定仍存在顯著差異[12]。 2. 假名化(Pseudonymization):歐盟《一般資料保護規則》(General Data Protection Regulation, GDPR)及英國《一般資料保護規則》(UK GDPR)、日本《個人資料保護法》(個人情報の保護に関する法律)均有假名化相關規範。關於降低可識別性的程度,均要求假名化資料在不使用額外資訊的情況下,須達到無法直接識別特定個人的程度,但額外資訊應與假名化資料分開存放,並採取相應技術與組織措施,以確保無法重新識別特定個人,因此假名化資料仍被視為個人資料。而關於假名化程序,日本個資法明定應刪除或替換個人資料中可識別描述或符號,歐盟及英國GDPR雖未明定具體程序,但通常被認為採用類似程序[13]。 3. 匿名化(Anonymization):歐盟及英國GDPR、日本個資法及加拿大CPPA均有匿名化相關規範。關於降低可識別性的程度,均要求匿名化資料無法直接或間接識別特定個人,惟可識別性的門檻存在些微差異,如歐盟及英國GDPR要求考慮控管者或其他人「合理可能用於」識別個人的所有方式;日本個資法則規定匿名化資料之處理過程必須符合法規標準且不可逆轉。再者,上述法規均將匿名化資料視為非屬於個人資料,但仍禁止用於重新識別特定個人[14]。 參、事件評析 本次圓桌會議上發布《關於促進可信賴AI的資料保護機構角色的聲明》、《關於AI與兒童的聲明》,彰顯G7 DPAs在推動AI治理原則方面的企圖,強調在AI技術蓬勃發展的背景下,隱私保護與兒童權益應成為優先關注的議題。與此同時,我國在2024年7月15日預告《人工智慧基本法》草案,展現對AI治理的高度重視,融合美國鼓勵創新、歐盟保障人權的思維,針對AI技術的應用提出永續發展、人類自主、隱私保護、資訊安全、透明可解釋、公平不歧視、問責等七項原則,為國內AI產業與應用發展奠定穩固基礎。 此外,本次圓桌會議所發布《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》,揭示各國在降低可識別性相關用語定義及其在資料保護與隱私框架中的定位存在差異。隨著降低可識別性的方法與技術不斷創新,這一領域的監管挑戰日益突顯,也為跨境資料流動越發頻繁的國際環境提供了深化協調合作的契機。在全球日益關注資料保護與隱私的趨勢下,我國個人資料保護委員會籌備處於2024年12月20日公告《個人資料保護法》修正草案,要求民間業者設置個人資料保護長及稽核人員、強化事故通報義務,並針對高風險行業優先實施行政檢查等規定,以提升我國在數位時代的個資保護水準。 最後,本次圓桌會議尚訂定《2024/2025年行動計畫》(G7 Data Protection and Privacy Authorities’ Action Plan)[15],圍繞DFFT、新興技術與跨境執法合作三大議題,並持續推動相關工作。然而,該行動計畫更接近於一項「基於共識的宣言」,主要呼籲各國及相關機構持續努力,而非設定具有強制力或明確期限的成果目標。G7 DPAs如何應對數位社會中的資料隱私挑戰,並建立更順暢且可信的國際資料流通機制,將成為未來關注的焦點。在全球共同面臨AI快速發展所帶來的機遇與挑戰之際,我國更應持續關注國際趨勢,結合自身需求制訂相關法規以完善相關法制,並積極推動國際合作以確保國內產業發展銜接國際標準。 [1]Office of the Privacy Commissioner of Canada [OPC], G7 DPAs’ Communiqué: Privacy in the age of data (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/communique-g7_241011/ (last visited Feb 3, 2025). [2]Id. at para. 5. [3]Id. at para. 7-9. [4]Office of the Privacy Commissioner of Canada [OPC], Statement on the Role of Data Protection Authorities in Fostering Trustworthy AI (2024), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2024/s-d_g7_20241011_ai/ (last visited Feb 3, 2025). [5]Office of the Privacy Commissioner of Canada [OPC], Statement on AI and Children (2024), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2024/s-d_g7_20241011_child-ai/ (last visited Feb 3, 2025). [6]Office of the Privacy Commissioner of Canada [OPC], Reducing identifiability in cross-national perspective: Statutory and policy definitions for anonymization, pseudonymization, and de-identification in G7 jurisdictions (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/de-id_20241011/ (last visited Feb 3, 2025). [7]Office of the Privacy Commissioner of Canada [OPC], Statement on Generative AI (2023), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2023/s-d_20230621_g7/ (last visited Feb 3, 2025). [8]Supra note 4, at para. 11. [9]Supra note 4, at para. 18. [10]Supra note 5, at para. 5-6. [11]Supra note 5, at para. 7. [12]Supra note 6, at para. 11-15. [13]Supra note 6, at para. 16-19. [14]Supra note 6, at para. 20-25. [15]Office of the Privacy Commissioner of Canada [OPC], G7 Data Protection and Privacy Authorities’ Action Plan (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/ap-g7_241011/ (last visited Feb 3, 2025).

全美各州醫療委員會聯合會發布人工智慧(AI)治理指引,並要求醫師為AI之利用結果負最終責任

全美各州醫療委員會聯合會(The Federation of State Medical Boards, FSMB)於2024年4月發布「引導人工智慧以負責任與符合倫理方式融入臨床實務」(Navigating the Responsible and Ethical Incorporation of Artificial Intelligence into Clinical Practice)指引,明確概述醫師於利用AI協助提供照護時可採取之步驟,以履行其倫理與專業職責,期能藉此降低對患者造成傷害之風險;本指引之特色在於,其要求醫師為AI之利用結果負最終之責任。 FSMB 向各州醫療委員會與其他利害關係人所提供之原則與建議如下,以支持對包含AI之臨床照護進行負責任與符合倫理之監管: (1)透明度與揭露(Transparency and Disclosure): 應要求維持於醫療照護領域使用AI之透明度;各州醫療委員會應制定明確之指導方針,向患者揭露AI之使用情況,其有助於患者與醫師之理解,但不會造成不必要之行政負擔;FSMB 應制定文件,詳細說明最常用之AI工具之功能與局限性,以協助醫療委員會發揮監管者之角色,並應制定常見問題與最佳實務文件,作為提供照護時利用AI方面關於透明度之資源。 (2)教育與理解(Education and Understanding): FSMB及其於醫學教育界之合作夥伴,應為醫師、醫療委員會與患者,確認有關醫療照護中AI之結構化教育資源,該等資源應包括協助瞭解AI如何運作、其優點、潛在風險以及對患者照護之影響。 (3)負責任之使用與問責(Responsible Use and Accountability): 開發人員應協助醫師瞭解何時、以及如何於患者之照護中利用AI工具;選擇AI工具支援臨床決策之醫院系統、保險公司或其他機構應向醫師提供有關AI工具之教育、存取各工具之性能報告,並應設計一個定期檢視工具功效的流程;AI工具應以得使各州醫療委員會能稽核與理解之方式設計,以便適當評估依賴工具輸出結果之醫師是否偏離照護標準(standard of care);FSMB 應支持各州醫療委員會針對臨床醫師如何負責任、可問責地使用AI之解釋。 (4)公平性與近用(Equity and Access): 應努力確保所有患者皆能公平地近用AI帶來之好處;FSMB與各州醫療委員會致力於以下原則:醫療人員所提供之照護是公平的、且不受基於種族、民族或其他形式歧視之偏見影響;FSMB應與其他利害關係人一起理解並解決演算法偏差問題。 (5)隱私與資料安全(Privacy and Data Security): AI工具之開發者必須實施嚴格之保護措施,以保護AI開發與評估時所利用之患者資料,通常情況下應告知患者資料如何被利用,且FSMB應與行業利害相關人一起制定AI系統使用與散布患者資料之政策,包括針對AI開發或評估中使用之患者資料之最低資料保護措施。 (6)監督與監管(Oversight and Regulation): 各州醫療委員會必須保留對於提供醫療服務時,不當應用AI工具之醫生進行紀律處分之權力,其包括問責議題之考慮,特別是當AI系統變得更加自主時;各州醫療委員會應審查其管轄範圍內如何對「醫療行為」(practice of medicine)進行法律定義,以確保對提供醫療照護、人力或其他方面進行持續之監管監督。 (7)法律法規之持續審查與調整(Continual Review and Adaptation of Law and Regulations): 各州醫療委員會應在FSMB之支持下,隨著AI之不斷發展,持續檢視與更新與AI相關之指引與法規;政策制定者應考慮AI對基本法律原則的影響,例如醫療行為之定義以及AI對企業醫學實務之影響;FSMB 應建立一個專門團隊,持續檢視與調整AI指引與法規。 本指引指出,AI工具通常無能力取代醫師之專業判斷、道德責任或對州醫療委員會之責任,醫療行為中之關鍵職業責任始終為確保診斷、臨床決策與建議不存在偏差。與用於診斷或治療疾病之任何其他工具或鑑別方法相同,醫療專業人員有責任確保基於證據結論之準確性與真實性,因此於將AI系統用於患者照護前,醫師應以合理努力識別與解決偏差(如虛假或不準確之資訊等)。

TOP