美國發布關於標準必要專利之政策宣言草案,擬修改核發禁制令態度

  美國司法部(United States Department of Justice)、美國專利商標局(The United States Patent and Trademark Office)、美國國家標準與技術研究院(National Institute of Standards and Technology)於2021年12月6日共同發布「修改『標準必要專利』授權協議及司法救濟方法之政策宣言草案」(Draft Policy Statement On Licensing Negotiations And Remedies For Standards-Essential Patents Subject To Voluntary FRAND Commitments,下稱2021政策宣言草案),並徵集公眾意見,截止時間為2022年2月4日。2021政策宣言草案係在回應2021年7月9日「促進美國經濟體競爭性行政命令」(Executive Order on Promoting Competition in the American Economy)關於檢討2019年「有關『標準必要專利』司法救濟方法之政策宣言」(Policy Statement On Remedies For Standards-Essential Patents Subject To Voluntary FRAND Commitments,下稱2019政策宣言)之要求。

  2021政策宣言草案揭示了兩大重點:

(一)改變SEP被侵害時,對禁制令(injunction)之核發態度

  2021政策宣言草案對於「SEP被侵害時,是否核發禁制令」一事,擬回歸適用聯邦最高法院自eBay Inc. v. MercExchange, L.L.C., 547 U.S. 388 (2006)案以來,就禁制令之核發所設立之原則—(1)原告(專利權人)會因專利侵權而遭受無法填補(irreparable)的損害;(2)目前法律上之其他救濟方法,是不足以賠償專利權人所受的損害;(3)衡量專利權人及被授權人可能遭遇之困難,足認有必要進行衡平法上的救濟;(4)核發禁制令不會傷害到任何公共利益。

(二)揭示何謂符合「誠信原則」(good-faith)授權協議的指導原則

(1)雙方應以合宜態度推進授權協議:

  以SEP專利權人而言,其應向潛在被授權人告知可能侵害該SEP的行為態樣;其並以「公平、合理及無歧視」(fair, reasonable, and non-discriminatory, FRAND)原則進行授權。

  以SEP被授權人而言,其應於知悉以上資訊後,於商業上得被認為合理的時間內,以合宜態度推進該協議,或逕自接受該授權協議,或拒絕原要約而反向提出一合於FRAND原則之新要約(counteroffer)。其他合宜態度例如:就SEP專利權人提出進一步探詢(例如:詢問該SEP目前之專利有效性及有無侵權情形)或請求提供更具體的資訊,或建議目前雙方所遇到的授權上爭議可透過公正第三方解決。

  茲有附言者,SEP專利權人在收到以上回應後,亦應「於合理的時間以合宜態度」推進授權協議,例如接受被授權人反向提出之新要約,或為使原授權協議較可被接受,再行提出一合於FRAND原則之授權條款,或回應被授權人想得知更多資訊之請求,或亦提出「可透過公正第三方解決雙方所遇到之授權紛爭」的方案等。

(2)雙方應合宜妥善解決紛爭:

  如雙方因授權而生紛爭,建議尋求替代爭議解決方式(alternative dispute resolution);如仍欲透過司法解決,建議雙方就管轄法院達成合意,而非單方面擇定法院而提起訴訟。

  此次徵求公眾意見的主要議題如下:

(1)2021政策宣言草案是否較可適當平衡SEP專利權人及被授權人之利益?

(2)「可申請核發禁制令」一事是否為SEP專利權人願意遵守FRAND原則的重要因素?

(3)如何提升SEP授權協議之效率及透明度?

(4)2021政策宣言草案所揭示對於SEP授權時之「誠信原則」之指導原則,可否為SEP授權協議建構良好架構?

(5)是否有潛在SEP被授權人願意及不願意接受FRAND授權協議之情形?

(6)有關單位是否曾經或應就SEP授權協議提供其他參考資訊?

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國發布關於標準必要專利之政策宣言草案,擬修改核發禁制令態度 , 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8790&no=66&tp=1 (最後瀏覽日:2025/12/07)
引註此篇文章
科法觀點
你可能還會想看
歐盟發佈關於監督金融業之數據保護準則

  歐洲數據保護監督組織(European Data Protection Supervipsor,EDPS)發表「關於在歐盟監督金融業之數據保護準則」(Guidelines on Data Protection for Financial Services Regulation),以作為確保歐盟的數據保護規範,將被整合進正在發展中的金融政策與相關規定之實用工具。該準則為金融市場監督機制的一部分,在金融業對個人資料的處理上,特別是透過監控、記錄保留、回報、以及資訊交換這些存有侵犯個人資料和隱私權風險的措施予以規範。   該準則包含10項步驟與建議,旨在協助歐盟後續金融監督政策的制定,其中一些重要的建議如下: (1)應評估資訊之處理是否可能妨礙隱私權。 (2)應為數據的處理建立法律基礎。 (3)評估適當的資訊保留期限並給予正當化依據。 (4)建立個人資料傳輸至歐盟外的正當法律依據。 (5)提供個人資料保護權利的適當保障。 (6)衡量適當的數據安全保護措施。 (7)應為數據處理的監督提供特定之程序。   有鑒於2008年金融危機的影響,該準則透過提供一個能確保個人資料被妥善保護的有效方法,期以重建金融市場的信心。Giovani Buttarelli,作為新任歐洲數據保護監督委員,在一份伴隨準則釋出的聲明稿當中表示:「個人資料的價值已經隨著數位經濟的成長不斷增加,確保各行業的個人資料得以受到保護也益顯重要。歐洲數據保護監督組織(EDPS)計畫對不同行業制定相關保護規範,此準則是第一個發佈的。」

研發成果下放就不適用國有財產法嗎?

研發成果下放就不適用國有財產法嗎? 資訊工業策進會科技法律研究所 2020年3月26日   科學技術基本法(下稱科技基本法)下放研發成果予執行單位,授權各部會機關按其對研發成果管理運用的需求,彈性制訂該部會之科學技術研究發展成果歸屬及運用辦法(下稱成果運用辦法)。然據悉某些公立學校或公立機關(構)曾在盤點財產時,因漏未將研發成果登入為國有財產,或列帳時未列載相關費用而遭主計處指正,從而對研發成果是否為國有財產及如何適用國有財產法有所疑問。因此,本文先回歸科技基本法,探討國有財產法之適用範圍,再論成果運用辦法和國有財產法間互補適用的關係,以解答上述疑問。 壹、科技基本法排除國有財產法適用之範圍   按科技基本法第6條第1項及第2項[1],當研發成果歸屬於公立學校、公立機關(構)或公營事業等公部門單位時,僅排除適用國有財產法中保管、使用、收益及處分之規定,改由各部會之成果運用辦法規範,故當研發成果歸屬於公部門時,並非完全排除適用國有財產法,係僅於前揭特定管理運用事項適用科技基本法及其授權訂定之成果運用辦法。因此其他未被排除的國有財產法規定[2],包括何謂國有財產與國有財產種類之總則、國有財產登記、設定產籍與維護,以及有關國有財產之檢查與財產報告等仍須依循相關規範。前述遭主計處指正之案例,或許就是忽略歸屬於公部門之研發成果仍有前揭國有財產法之適用,致漏未將研發成果依該法登入國有財產或將相關支出列帳。 貳、成果運用辦法的適用範圍   另一可能造成執行單位在運用其研發成果時產生疑問的原因,是現行各部會之成果運用辦法中,有部分規定與前述科技基本法第6條第2項,將歸屬於公立學校與公立機關(構)之研發成果定性為國有財產之意旨扞格。以衛生福利部科學技術研究發展成果歸屬及運用辦法(下稱衛福部成果運用辦法)為例,雖然按該辦法第2條第5款定義國有研發成果為研發成果歸屬國家所有者。然該辦法第30條第1項第1款[3],卻出現執行單位為公、私立學校、公立研究機關(構)之「非國有」研發成果收入之上繳交比率規定,恐使適用本辦法之公立學校、公立機關(構),誤以為其所有之研發成果可為非國有,而產生無庸適用國有財產法之誤解,亦與該辦法第2條第5款對國有研發成果的定義產生內部矛盾,更與科技基本法第6條第2項相衝突。   當研發成果歸屬公立學校、公立機關(構)時,因上述公部門單位本即為政府機關(構),故歸屬上述單位等同歸屬於國家,凡屬上述單位所有之研發成果即為國有研發成果,也會適用國有財產法;邏輯上不應出現公部門單位擁有非國有研發成果之情況,顯然衛福部成果運用辦法第30條第1項應修正第1款,將非國有研發成果上繳比率規定之適用主體排除公立學校、公立研究機關(構)。 參、結論   現行科技基本法第6條第1項與第2項,使研發成果是否適用國有財產法,會因為其歸屬而有不同。研發成果歸屬於公部門者為國有財產原則上應適用部分國有財產法,例外於特定管理運用事項始適用各該部會的成果運用辦法;而研發成果歸屬於私部門者非國有財產,無國有財產法之適用,僅適用各該部會辦法管理。在這套體制下,執行單位須注意國有研發成果仍是國有財產,仍須依國有財產法進行財產列帳、登記及財產檢查;而出現規定公立學校、公立研究機關(構)「非國有研發成果」條文之成果運用辦法,   則顯與現行科技基本法有違,反致生誤會,建議進行修正。公立學校與公立研究機關(構)在進行研發成果之管理、運用時,除依循各部會成果運用辦法外,應注意科技基本法的意旨,以避免造成被認為未依法處理之情況。 [1]科技基本法第6條第1項及第2項:「政府補助、委託、出資或公立研究機關(構)依法編列科學技術研究發展預算所進行之科學技術研究發展,應依評選或審查之方式決定對象,評選或審查應附理由。其所獲得之研究發展成果,得全部或一部歸屬於執行研究發展之單位所有或授權使用,不受國有財產法之限制。前項研究發展成果及其收入,歸屬於公立學校、公立機關(構)或公營事業者,其保管、使用、收益及處分不受國有財產法第十一條、第十三條、第十四條、第二十條、第二十五條、第二十八條、第二十九條、第三十三條、第三十五條、第三十六條、第五十六條、第五十七條、第五十八條、第六十條及第六十四條規定之限制。」 [2]未被排除而應適用的國有財產法條為:第1條到第8條總則、第9、10、12、16條之管理機構、第17條到第19條國有財產登記、第21條到第24條設定產籍、第26條有價證券保管處所、第27條之損害賠償責任、第30、31條不動產維護、第32、34條公用國有財產之使用和非公用國有財產之變更、第37條受贈財產,第38到41條非公用財產撥用、收益、第42到44、45條不動產與動產出租、第46到48條不動產與動產之利用,處分第49到55條不動產與動產標售、第59條非公用財產之估價、第61到63條財產檢查、第65到70條財產報告、第71到73條之刑責和舉報獎金、第75到77條之施行日期等。內文未提及之其它未排除適用的條文,主要是針對有體物,即動產與不動產的相關規範,和非公用國有財產之管理;而研發成果多為無體財產,即智慧財產權等,且多為公用財產,故使用這部分條文的情況較少,在此不贅述。 [3]衛福部成果運用辦法第30條第1項第1款:「執行單位因管理及運用其非國有研發成果之收入,應依下列規定辦理:一、執行單位為公、私立學校、公立研究機關(構)者,應將其研發成果收入之百分之二十繳交本部。」

英國女皇批准「2011能源法」,致力推動能源效率政策

  英國2011年10月女皇正式批准(Royal Assent)同年9月經上議院(The House of Lords)所審議通過之「2011能源法(Energy Act 2011)」,其主要規範內容係為規劃擴編英國「綠色新政(Green Deal)」規模,及其投入財務協助之適用領域,並且對於家庭及商業部門之能源效率,訂定強制規範以加強提昇執行績效,共同推動英國達成低碳能源國家之政策目標。   關於推動家庭及商業部門之能源效率部分,「2011能源法」對於「私部門租賃建物(Private rented sector)」部分,特別訂定強制規範,要求自2016年4月起,私有建物擁有者(Private Residential Landlords)將不能拒絕租賃者所提出之「能源效率改善方案(Energy Efficiency Improvements)」,並且政府將提供各項財務金融協助(如綠色新政資金)。   並且,「2011能源法」對於私有建物能源效率等級(Energy Efficiency Standard)之標示,積極賦予法律推動效力,要求自2018年4月起,英國境內私有建物倘若未達能源效率標示等級E以上者,將限制其對外(居住使用及商業使用)出租之權利。   「2011能源法」為協助英國達成2020年國家節能減碳政策目標(減少碳排放20%以上,能源效率改善達20%以上)之重要立法,並且對於加強推動能源效率、擴編綠色新政規模、民間部門強制義務等,制定相關規範並設立推動時程,未來推動上可持續觀察其落實成效。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP