英國法律委員會提出75項自駕車修法具體建議,突破框架建構新體系

  英格蘭與威爾斯法律委員會(The Law Commission of England and Wales)與蘇格蘭法律委員會(The Scottish Law Commission)於2022年1月26日聯合提出¬「自駕車修法建議報告(Automated Vehicles: joint report)」,總結其自2018年來三次公眾意見諮詢之回應分析,提出75項法律修正建議,提交英格蘭及蘇格蘭議會決議是否採納並修法。

  修法建議範圍涵蓋廣泛,重要突破性建議包含:

(1)整合英國原有之《2018自動與電動車法(Automated and Electric Vehicles Act 2018)》中自駕車之認定標準,訂定一套雙階段自動駕駛認證許可制度,於第一階段審驗「整車」之規格是否符合國際或國內車輛型式安全審驗標準,並於第二階段審驗¬¬¬「個別自駕功能」是否能符合國內交通法規。

(2)提出「主責使用者(User-In-Charge, UIC)」概念,若車輛設計為在某些情形下需要人工接手駕駛,則自動駕駛系統(Automated Driving System, ADS)啟動時,坐在車內駕駛座之自然人即為UIC。

(3)對於不需要UIC車輛(No User-In-Charge, NUIC)營運平台業者,以及合法自駕車業者(Authorized Self-Driving Entities, ASDE),提出資格條件要求,包含必須具備良好名聲、財務穩健,必須向主管機關提交安全案例(safety cases)等。

(4)因《2018自動與電動車法》中已有要求自駕車均須投保保險,因此當自駕車造成車禍及損傷,不需先經確認有無人為故意過失,即可先行以保險進行賠償。事後若保險公司認為自駕車設計製造者有責任,得再依商品責任規範轉向車廠求償。

(5)而為了幫助事故調查、釐清責任,自駕車相關資料之持有者(如ASDE)應將相關資料保存3年又3個月,以配合侵權行為之法律請求權時效。

  本分報告綜合各方意見,以務實之態度提出具體修法建議,深具參考價值,值得我國深入研析。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 英國法律委員會提出75項自駕車修法具體建議,突破框架建構新體系, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=8798&no=57&tp=1 (最後瀏覽日:2026/01/19)
引註此篇文章
科法觀點
你可能還會想看
德國新聯邦個人資料保護法將於2018年5月施行

  德國聯邦議院在今年4月27日通過「個人資料保護調整和施行法」(Datenschutzanpassungs- und Umsetzungsgesetz, DSAnpUG),其中包含新的德國聯邦個人資料保護法(Bundesdatenschutzgesetz, BDSG)。在這部新的法案中,已施行40年的 BDSG進行大幅調整以符合歐盟個人資料保護規則(Datenschutzgrundverordnung , DSGVO)的標準。   所有歐盟成員國將於2018年5月25日開始適用DSGVO的規定。DSGVO希望能在歐盟成員國內,形成一套具有法律統一性、標準性與高水準的個人資料保護制度。這也意味著侵害個人資料保護的違法行為,如:未使用適當的加密技術以確保個人資料安全,可能受到更嚴重的處罰,最高可達2,000萬歐元或企業全年營業額的4%。   DSGVO的目的在確保歐盟成員國間個人資料保護的共同法制標準,但考量到各成員國間的區域差異,DSGVO也提供國家立法者約60條的開放性條款(Öffnungsklauseln)─允許許多地區的成員國在特定條件下可不依循DSVGO標準。德國聯邦政府在新的BDSG,也運用了這些開放性條款。但有批評者認為,部分新的BDSG規範內容已超越DSGVO的條文規範,如:個資保護專員(Datenschutzbeauftragten)的就業保障。因此,新的BDSG與歐盟法律不符的部分,很可能被宣布違反歐盟法律。另一方面,舊的BDSG僅有48條規定,而新的BDSG則超過85條規定,且更為複雜,這都提高了法律適用上的難度。   雖然新的BDSG其適法性仍有爭議,且是否能通過司法審查亦屬未知。但盡管如此,隨著DSAnpUG 及新的BDSG法律條文制定,未來德國個人資料處理的基本法律框架已確定。由於企業個人資料處理的基本原則已明訂於DSGVO中,且新的BDSG仍是依照DSGVO的規範而制定,因此企業應盡速審查和調整他們的契約和流程,以符合DSGVO的規範要求。

澳洲財政部發佈群眾募資法制框架選項之諮詢文件

  2014年12月澳洲財政部就股權式群眾募資(Crowd-Sourced Equity Funding, CSEF)對外發佈政策框架選項的諮詢文件,為使新創企業容易對廣大的中小投資者籌集資金,該稿件承認政府需要採取行動,以克服現有的監管障礙,以利在澳洲廣泛的使用群眾募資這項工具。 提出討論文件的三個政策選項包括: 一、 公司和市場諮詢委員會(CAMAC)在2014年6月提出的法制框架。 二、 在2014年4月份於紐西蘭生效施行的紐西蘭模式(New Zealand model)的法制框架。 三、 維持現狀。   上述方案各具特色及優缺點,在公司和市場諮詢委員會(CAMAC)的提案中,建議專注於修改聯邦公司法,創造一類特殊的豁免上市公司(不需召開年度股東大會、提供經審計之財務報告等),且限制符合條件之小型企業才能納入,此外,設定200萬美元的募資上限,並可在12個月內在此範圍內提高募資;在中介機構部分,需持有澳大利亞金融服務執照(AFSL),對於盡職調查(Due diligence)所承擔的責任要求較低,須提供風險警告予參與群眾募資的投資者,且禁止提供其投資諮詢和貸款;對於投資者之規定,則設有個案均僅能投資2,500澳幣的上限以及12個月內投資股權式群眾募資,總金額不得超過10,000澳幣的限制。   若選擇第二方案,即使用已於2014年4月生效的紐西蘭法制框架,與第一方案相較具有諸多相似之處。然而,兩制間也存有顯著的差異,包括紐西蘭模式並未特別創設一類豁免上市公司、也未將進行股權式群眾募資的公司限制於小企業;對中介機構平台的收費標準不設限制,資訊揭露要求亦較低;而對參加投資者的投資金額限制原則上是近乎相同的。   如果選擇第三個維持現狀方案,在現行法制下意味著群眾募資起始時將面臨50名非員工股東的上限、股份公開報價禁令的限制,設立後須負擔如定期發佈經查核之財報等較一般私有企業更繁重的公司治理要求,此外,中介機構如群眾募資平台等也必須擁有澳大利亞金融服務執照(AFSL)。   諮詢文件訂立2014年12月8日至2015年2月6日這段期間內,向大眾公開徵求建議,並要求各利害關係人如中介機構,包括創投基金與群眾募資平台之意見。以推動群眾募資法制化,並尋求進一步的磋商出可能的立法草案,在確保減少監管障礙與保持充足投資者保護之間取得適當的平衡。可預期的未來這一年群眾募資的法制架構將在澳洲逐漸明朗化。

美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件

美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。

從美日共同侵權責任認定之實務發展談創新服務方法發明之專利布局策略

TOP