英格蘭與威爾斯法律委員會(The Law Commission of England and Wales)與蘇格蘭法律委員會(The Scottish Law Commission)於2022年1月26日聯合提出¬「自駕車修法建議報告(Automated Vehicles: joint report)」,總結其自2018年來三次公眾意見諮詢之回應分析,提出75項法律修正建議,提交英格蘭及蘇格蘭議會決議是否採納並修法。
修法建議範圍涵蓋廣泛,重要突破性建議包含:
(1)整合英國原有之《2018自動與電動車法(Automated and Electric Vehicles Act 2018)》中自駕車之認定標準,訂定一套雙階段自動駕駛認證許可制度,於第一階段審驗「整車」之規格是否符合國際或國內車輛型式安全審驗標準,並於第二階段審驗¬¬¬「個別自駕功能」是否能符合國內交通法規。
(2)提出「主責使用者(User-In-Charge, UIC)」概念,若車輛設計為在某些情形下需要人工接手駕駛,則自動駕駛系統(Automated Driving System, ADS)啟動時,坐在車內駕駛座之自然人即為UIC。
(3)對於不需要UIC車輛(No User-In-Charge, NUIC)營運平台業者,以及合法自駕車業者(Authorized Self-Driving Entities, ASDE),提出資格條件要求,包含必須具備良好名聲、財務穩健,必須向主管機關提交安全案例(safety cases)等。
(4)因《2018自動與電動車法》中已有要求自駕車均須投保保險,因此當自駕車造成車禍及損傷,不需先經確認有無人為故意過失,即可先行以保險進行賠償。事後若保險公司認為自駕車設計製造者有責任,得再依商品責任規範轉向車廠求償。
(5)而為了幫助事故調查、釐清責任,自駕車相關資料之持有者(如ASDE)應將相關資料保存3年又3個月,以配合侵權行為之法律請求權時效。
本分報告綜合各方意見,以務實之態度提出具體修法建議,深具參考價值,值得我國深入研析。
本文為「經濟部產業技術司科技專案成果」
.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 美國前任總統拜登於2022年底簽署《FDA現代化法2.0》(FDA Modernization Act 2.0, FDAMA 2.0),修改FDA自1938年以來新藥必須實施動物試驗之要求,將進入人體臨床試驗之前階段試驗改稱為「非臨床試驗(nonclinical test)」並許可採取非動物實驗方法,為美國在藥物安全監管方面的重大改變。 在FDAMA 2.0通過後,FDA仍未啟動修改監管法規以符合該法,為了確保改革能加速進行,2024年2月6日美國兩黨參議員合作提出《FDA現代化法案3.0》(FDAMA 3.0) 草案並於同年12月12日參議院無異議通過,惟眾議院在第118屆國會結束前並未討論該案,參議員於2025年2月第119屆國會重新提出該法案。 FDAMA 3.0重點包括: 1. 一般規定:FDA應於1年內,建立針對藥品的非臨床測試方法資格認定流程(Nonclinical Testing Methods Qualification Process);個人可申請特定用途的非臨床測試方法資格認定。 2. 符合資格之非臨床測試方法:非臨床測試方法必須可替代或減少動物測試;且提高非臨床測試對安全性和有效性的預測性,或縮短藥物(含生物製品)的開發時間。 3. 符合資格認定之應用:獲資格認定之非臨床測試方法,FDA應加速相關藥品申請(包括變更申請)的審核流程;允許申請人於藥品申請中引用相關數據與資訊。 4. 本法生效日起兩年內應每年向國會報告流程運行情形,包括已認定的方法類型、申請數量、審查天數、批准數量,以及該流程減少的動物數量估算等。 目前雖然其他國家尚未有類似立法,但歐美均投入大量研發資源減少動物實驗,且FDA亦於近日提出《減少臨床前安全試驗使用動物實驗之路線圖》,後續應密切關注本法案是否通過及相關產業影響。
布拉格提案(The Prague Proposals)2019年5月3日,來自全球30多國的政府官員與來自歐盟、北大西洋公約組織的代表於捷克布拉格所舉辦的5G資安會議(Prague 5G Security Conference)中,強調各國建構與管理5G基礎建設時應考慮國家安全、經濟與商業發展等因素,特別是供應鏈的安全性,例如易受第三國影響之供應商所帶來的潛在風險,本會議結論經主辦國捷克政府彙整為布拉格提案(The Prague Proposals),作為提供世界各國建構5G基礎建設之資安建議。 在這份文件中首先肯認通訊網路在數位化與全球化時代的重要性,而5G網路將是打造未來數位世界的重要基礎,5G資安將與國家安全、經濟安全或其他國家利益,甚至與全球穩定等議題高度相關;因此應理解5G資安並非僅是技術議題,而包含技術性與非技術性之風險,國家應確保整體性資安並落實資安風險評估等,而其中最關鍵者,則為強調確保5G基礎建設的供應鏈安全。 因此在布拉格提案中強調各國建構通訊網路基礎建設,應採用國際資安標準評估其資安風險,特別是受第三國影響之供應商背後所潛藏之風險,並應重視5G技術變革例如邊緣運算所產生的新風險態樣;此外對於接受國家補貼之5G供應商,其補貼應符合公平競爭原則等。布拉格提案對於各國並無法律上拘束力,但甫提出即獲得美國的大力肯定與支持。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。