因應2021年10 月日本政府修訂的全球變暖對策計劃,訂立森林在2030年要達到3800萬噸的二氧化碳吸收量之目標,因此日本林業廳公布了「如何計算森林吸收的二氧化碳量」之方法,進一步展現森林吸收二氧化碳的功能,以提高民間企業和地方公共團體等公眾參與的植林、造林活動的意願,以及促進公眾對森林維護在全球暖化對策中的重要性認識。分別為下列三種計算方式:
每1公頃森林一年吸收二氧化碳量=每公頃森林每年樹幹生長體積(m3/年·ha)×膨脹係數×(1+地下比率)×容積密度(t/m3)×碳含量×二氧化碳換算係數
因林地復育增加森林吸收二氧化碳量=有進行林地復育和沒有進行林地復育的森林估計累積量之差×膨脹係數×(1+地下比率)×容積密度(t/m3)×碳含量×二氧化碳換算係數
因種植森林土壤所維持之二氧化碳含量=土壤平均碳累積量(tC/ha)×種植森林所保持的土壤量相關係數×種植森林之面積(公頃)×種植森林之年數×土壤流出時排放到大氣中的二氧化碳排放係數×二氧化碳換算係數
此份公告規範了日本未來如何計算森林吸收的二氧化碳量之方式,目前我國依據「國際氣候變遷專家委員會(IPCC)」建議公式,推估森林資源林木之碳貯存量,推估結果臺灣地區森林林木之碳貯存量約有754百萬公噸二氧化碳,每公頃平均碳存量約為每公頃378 公噸二氧化碳,對此亦可參考上述公式推算,以更了解我國的森林與碳管理關係。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
英國Ofcom發布說明行動網路與Wi-Fi混合共享上層6 GHz 頻段重要性之文件,以最大化頻譜利用效率。英國通訊傳播管理局(The Office of Communications, Ofcom)於2024年5月21日發布「行動網路與Wi-Fi混合共享上層6 GHz 頻段之重要性」(Mobile and Wi-Fi in Upper 6 GHz: Why hybrid sharing matters)文件,指出為促進稀缺頻譜資源有效利用,需實施創新頻譜共享機制,以便為更多用戶提供服務。有鑑於2023年世界無線電通訊大會(World Radiocommunication Conference 2023, WRC-23)決議上層6 GHz(6425-7125 MHz)為國際行動通訊(International Mobile Telecommunications, IMT)使用頻段,同時承認該頻段可供Wi-Fi等無線接取系統(wireless access systems)使用,因此Ofcom初步探索出兩種可能分割方式,並於文件中分享,期望透過靈活混合共享機制,在與其他既有使用者共存之同時服務更多用戶: 1.可變頻譜分割(Variable spectrum split): 此方法將上層6GHz分割為Wi-Fi及行動網路優先頻段,Wi-Fi和行動網路可於各自優先頻段中自由布建,亦可於不干擾對方之前提下,於對方之優先頻段布建。 2.室內外分割(An indoor/ outdoor split): 此方法以建築物做為兩技術運作之分界,於室外及淺層室內(shallow indoor)區域布建6GHz行動網路,以降低既有3GHz行動通訊服務之負載;6GHz覆蓋不到之範圍,則仍由3GHz提供服務。室內大部分區域則分配給Wi-Fi布建,降低兩技術重疊布建情形,確保資源有效運用。 未來Ofcom將持續與業界合作開發其他混合共享框架技術與解決方案,計劃於2025年發布有關此主題之技術報告,早日實現行動網路與Wi-Fi之共享機制。
美國通訊委員會拍賣位於700MHz頻段之頻譜美國聯邦通訊委員會(Federal Communications Commission, FCC)預計於2008年1月24日開始Action 73之頻譜拍賣程序,以釋出位於700MHz頻段之頻譜,此一頻譜拍賣程序預計將為期數週甚或數月。 根據規劃,美國政府將在2009年年初完成無線廣播電視數位化,屆時廣播電視業者將繳回目前使用之700MHz頻段。又由於此一頻段之電波具有傳輸距離遠與穿透力強之特質,此次之頻譜拍賣活動廣受各方業者矚目,符合競標資格之業者包括電信業者、網路服務提供業者、有線電視業者及衛星電視業者,如AT&T、Verizon Wireless、Google、EchoStar Communications及Cablevision Systems等。據估計,此一頻譜拍賣所得之競標價格可能將會突破百億美元。 此次拍賣之頻譜包括5個頻段,每一個頻段的拍賣規則與用途均有所不同。其中D頻段必須與公共安全機構共用,未來得標者必須與公共安全機構溝通並達成協議,其所建立之全國性網路在緊急狀況發生時,亦必須優先提供公共安全相關機構使用。職是之故,D頻段之競標價格目前仍遠低於聯邦通訊委員會所開出之底價,未來若無業者出價達競標底價,則聯邦通訊委員會將更改底價與競標規則後,重新開放競標。
歐盟有機農民團體反對為新植物育種技術(NPBT)訂定新法歐洲法院(European Court of Justice, ECJ)於2018年7月作出裁定,利用新植物育種技術(New Plant Breeding Techniques , NPBT)誘變(mutagenesis)所得之作物亦屬於基因改造生物(genetically modified organism , GMO),因此須適用歐盟的基因改造生物管制指令(GMO Directive 2001/18/EC)。 對於不涉及外源基因添加的新植物育種技術,是否應視為基因改造生物,並需獨立於添加外源基因之基因改造生物另制定框架,對此引發了強烈的討論,科學界/農民跟環保團體/有機農法之農民之間抱持著相反的態度。 科學界/農民認為,歐洲法院是以近20年前所通過的基因改造生物管制指令所做出的解釋,並未考量該技術進步所造成的差異,其認為新植物育種技術之誘變與自然產生的誘變無實質差異,而需要就新植物育種技術另外進行立法。 歐盟有機農民運動聯盟(IFOAM EU)於2019年7月24日發出聲明,認為若將新植物育種技術排除於歐盟基因改造生物管制指令之適用,將造成有機農業與傳統非基因改造生物之農民無法於農作物生產過程中排除基因改造生物之存在,最終將使得消費者、農民、食品加工者失去選擇非基因改造生物之選擇自由,故樂見歐洲法院之見解。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」