日本修訂《教育資訊安全政策指引》以建構安全的校園ICT環境

  日本文部科學省於2022年3月發布「教育資訊安全政策指引」(教育情報セキュリティポリシーに関するガイドライン)修訂版本,該指引於2017年10月訂定,主要希望能作為各教育委員會或學校作成或修正資訊安全政策時的參考,本次修訂則是希望能具體、明確化之前的指引內容。本次修訂主要內容如下。

(1)增加校務用裝置安全措施的詳細說明:

充實「以風險為基礎的認證」(リスクベース認証)、「異常活動檢測」(ふるまい検知)、「惡意軟體之措施」(マルウェア対策)、「加密」(暗号化)、「單一登入的有效性」(SSOの有効性)等校務用裝置安全措施內容敘述。

(2)明確敘述如何實施網路隔離與控制存取權的相關措施:

對於校務用裝置實施網路隔離措施,並將網路分成校務系統或學習系統等不同系統,若運用精簡型電腦技術(シンクライアント技術)則可於同一裝置執行網路隔離。另外,針對校務用裝置攜入、攜出管理執行紀錄,並依實務運作調整控制存取權措施,例如安全侵害影響輕微者則可放寬限制以減輕管理者負擔。

相關連結
相關附件
你可能會想參加
※ 日本修訂《教育資訊安全政策指引》以建構安全的校園ICT環境, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8816&no=64&tp=1 (最後瀏覽日:2025/12/11)
引註此篇文章
你可能還會想看
美國傳播通訊委員會發動推展國家寬頻計劃

  美國聯邦通訊傳播委員會(FCC)於2009年04月08日宣佈開始推展國家寬頻計劃進程,以達到能使每位美國民眾均有能力負擔與使用寬頻網路的服務。   此項引發廣大爭議的寬頻計畫係植基於2009年的「美國經濟復甦與再投資法」(American Recovery and Reinvestment Act of 2009)─即眾所周知的「振興經濟方案」。在此之前,FCC曾於2007年04月根據1996年電信法第706節發佈法規制定提議意見調查書(NOI,FCC 09-31),希望蒐集各界對於以下四個問題的看法:1.) 何為「先進通訊服務」?;2.) 如何促進美國民眾先進通訊的使用;3.) 目前推動是否合理合時?4.) 何種方式可以更有效推動先進通訊服務發展。   此次,該計畫將獲得72億美元以實現下列要求:1.) 以最有效能與效率的方式確保全美民眾能接近使用寬頻網路服務;2.) 提出人民有能力負擔與寬頻服務最大效用化的策略;3.) 評估目前寬頻推展現狀(包括其他相關的計畫);4.) 如何運用寬頻網路服務以提升消費者權益、公民參與、公眾安全、社區發展、健康照護、能源獨立效率性、教育、員工訓練、私部門投資、企業活動、創造工作機會與經濟成長。   參眾兩院要求FCC必須在2010年02月17日前,將該最終方案遞交眾議院與參議院相關委員會審議。但是,有論者認為目前FCC的計畫與方向並未考量到終端使用者真正需求與如何使用該等科技;同時,歐巴馬政府針對寬頻網路議題未提供足夠的公民思辨機會,最後恐將事倍功半。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

西班牙隱私保護專責機構對Google發動刑事制裁程序

  西班牙隱私保護專責機構「資料保護專員」(Data Protection Commissioner;一般多以其西班牙文縮寫AEPD簡稱之 ),針對Google街景服務(Street View)攝影過程中不當蒐集網路用戶資訊一事,於2010年10月18日對Google發動刑事制裁程序(criminal sanction procedure)。AEPD於其網站上發表聲明,其已經掌握Google涉及五項犯罪活動的證據,其中包括蒐集Wi-Fi用戶資訊並將相關資料傳送回美國等,AEPD已將相關證據資料提交馬德里法院。   Google街景服務提供全球諸多地區的地理圖片,但此一服務也引發人們對於侵犯個人隱私之擔憂。儘管Google先前已多次針對街景攝影車攫取Wi-Fi用戶未經加密訊息之行為進行道歉,但仍有諸多國家對於Google是否違反內國隱私保護法規展開調查。   此次AEPD採取法律行動前,事實上西班牙網路用戶權利協會已就相同問題Google提起訴訟,而西班牙法院亦於今年8月展開調查。AEPD對外表示,一旦法院認定Google犯罪情事屬實,各個犯罪行為將可處以6萬至60萬歐元之罰金。無獨有偶,加拿大政府亦於10月19日認定Google收集Wi-Fi用戶資料之舉動,屬於違法行為。

美國通過最新的電子醫療紀錄之隱私與安全標準

  美國衛生部隸屬之醫療資訊科技標準委員會(Health IT Standards Committee)為了因應「2009年經濟復甦暨再投資法」(America Recovery and Reinvestment Act, “ARRA”)的通過,制定了新的電子醫療紀錄的隱私、安全標準,以擴大保護電子醫療紀錄的使用安全。     這次制定的電子醫療紀錄的隱私、安全標準,將透過具有足夠防護能力的醫療資訊科技系統標準,來保護電子醫療紀錄的交換,並且擴大適用範圍到醫療照護廠商與提供者,要求其必須在2011年前達到幾項資訊的使用控制標準,包括「醫療保險可攜與責任法」(Health Insurance Portability and Accountability Act, “HIPAA”)與「加密促進標準」(Advanced Encryption Standard)之相關規定,以完備個人電子醫療資訊的保護網。     在此次訂立的標準之下,任何人員或是應用程式欲使用與接近電子醫療紀錄,應符合法律所授予的接近與使用之要件。同時,處理個人醫療資訊的系統,也必須具備對個人醫療資訊加密與解密的能力,以保障個人醫療資訊的安全與完整。除了以上的要求,這些標準也要求相關的適用機構,必須在2013年以前完成符合病歷交換格式(HL7)的使用接近控制、安全宣示標記語言(Security Assertion Mark-up Language, “SAML”)、網路服務認證(Web Service Trust, “WS-Trust”)以及促進資訊標準建置組織(Organization for the Advancement of Structured Information Standards, “OASIS”)的機制,以保障醫療資訊的安全。

TOP