美國上訴法院營業秘密判決關於軟體功能之合理保密措施認定

  2022年3月9日美國聯邦第二巡迴上訴法院(下稱上訴法院)於Turret Labs USA, Inc. (下稱Turret) v. CargoSprint, LLC(下稱CargoSprint)案,維持紐約東區聯邦地區(下稱原審法院)的結論,駁回Turret的請求。依照上訴法院判決的結論,確認在原告主張軟體功能被盜用時,必須證明其與軟體供應商及使用者均簽訂保密協議,始符合保護營業秘密法(Defend Trade Secrets Act,DTSA)所定之營業秘密。

  2021年2月Turret指控CargoSprint及其CEO,以詐欺的方式,進入其授權Lufthansa Cargo Americas(下稱Lufthansa)使用的Dock EnRoll軟體,並對於軟體的技術資訊及演算法,進行逆向工程,盜用其營業秘密。CargoSprint則抗辯Turret所主張者,不成立營業秘密。

  對於軟體功能的合理保密措施認定標準,不論是原審法院及上訴法院均指出,應在於「誰被允許接觸」及「保密協議」。首先,對於「誰被允許接觸」之認定,原審法院指出Turret完全把軟體控制權委由Lufthansa,而Lufthansa使其顧客了解Dock EnRoll軟體功能。上訴法院則指出雖然Lufthansa已限制僅得貨運代理相關的使用者,能夠接觸軟體,但Turret並不能證明其與Lufthansa達成協議,由Lufthansa作出前述的軟體使用者限制。其次,對於「保密協議」之認定,不論原審法院及上訴法院均指出Turret未能證明其與Lufthansa及其他軟體使用者已簽訂保密協議。綜上所述,兩審級法院均認為Turret未採取合理保密措施。

本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
你可能會想參加
※ 美國上訴法院營業秘密判決關於軟體功能之合理保密措施認定, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8825&no=57&tp=1 (最後瀏覽日:2024/11/22)
引註此篇文章
你可能還會想看
聯合國討論網路身份管理計畫

  聯合國國家安全組織(U.N. National Security Agency)計畫於一項名為Q6/17之「網路使用者身份管理計畫」提案中,討論如何以修改網路架構之方式,確保網路通訊來源之真實性與可追溯性。此項計畫被認為可能對網路匿名性產生極大衝擊。   目前網路所賴以溝通訊息之TCP/IP通訊架構,仍允許使用者於一定範圍內保有於網路上匿名發言或活動之可能,例如Tor線上匿名軟體(Tor: anonymity online)之運作即是。然而,此種匿名式的運作架構,被抨擊可能威脅網路安全,例如駭客可利用大量偽造來源地址(spoofed source IP addresses),發動分散式阻斷服務(DDoS)攻擊。   有鑑於此,Q6/17提案乃嘗試藉由網路連線技術架構的調整,確保未來任何網路上之活動皆可追蹤出原始網路通訊來源(“IP Trackback”)。然而,此種作法被批評為將摧毀網路匿名特性,並對個人隱私造成侵害,或成為各國政府打擊政治異議人士的工具。發表匿名言論權利曾受許多國家憲法或國際條約的肯認,例如1995年美國最高法院於McIntyre v. Ohio Elections Commission一案,做出「匿名發表權乃受憲法保護之人民基本權」見解,歐盟亦有「網路通訊自由宣言(Declaration on Freedom of Communication on the Internet)」。故Q6/17嘗試消弭發表網路匿名言論之技術突破,是否能通過世界各國憲法之嚴格檢驗,仍值得後續關注研究。

2018年直布羅陀公布一系列DLT應用商業活動管制規範

  英國海外屬地直布羅陀,針對透過與日俱增的首次發行代幣(Initial Coin Offerings, 簡稱ICO)募集商業活動,早在2017年9月,其金融服務委員會(Gibraltar Financial Service Commission, 簡稱GFSC)已公布官方聲明,警告投資人運用分散式帳本技術(Distributed Ledger Technology,簡稱DLT)之商業活動,如:虛擬貨幣交易或ICO等具高風險且投機之性質,投資人應謹慎。   GFSC又於2018年1月公布「分散式帳本技術管制架構」(Distributed Ledger Technology Regulatory Framework),凡直布羅陀境內成立或從其境內發展之商業活動,若涉及利用DLT儲存(store)或傳輸(transmit)他人有價財產(value belong)者,均須先向GFSC申請成為DLT提供者(DLT provider),並負擔以下義務: 應秉持誠信(honesty and integrity)進行商業活動。 應提供客戶適當利息,且以公平,清楚和非誤導方式與其溝通。 應準備相當金融或非金融資源(non-financial resources)。 應有效管理和掌控商業活動,且善盡管理人注意義務(due skill, care and diligence),包含適當地告知客戶風險。 應有效配置(arrangement)客戶資產和金錢。 應具備有效公司治理,如:與GFSC合作且關係透明。 應確保高度保護系統和安全存取協定。 應具備系統以預防、偵測且揭發金融犯罪風險,如:洗錢和資恐。 應提供突發事件預備方案以維持商業活動繼續進行。   GFSC和商業部(Ministry of Commerce)又於2018年2月聯合公布,將於第二季提出全世界第一部ICO規範,管制境內行銷(promotion)、販售和散布數位代幣(digital token)行為,強調贊助人須先授權(authorized sponsor),並有義務確保遵守有關資訊揭露和避免金融犯罪之法律。

何謂「合作專利分類」?

  美國專利商標局(USPTO)與歐洲專利局(EPO)簽署協議,合作開發「以歐洲專利分類系統為基礎,並納入兩局分類實務特點」的共同分類系統:「合作專利分類」(Cooperative Patent Classification, CPC)系統,該系統為全球性的專利文件分類系統。USPTO與EPO為促進專利調合化,積極努力並共同合作建立CPC系統,該系統結合了兩局最好的分類作法,為專利技術文件建立一個共同且為國際間相容的分類系統,供專利審查使用。CPC於2013年1月1日宣布正式啟用,EPO開始使用CPC,不再使用歐洲專利分類(ECLA);2015年1月1日,USPTO正式宣告成功由美國專利分類(USPC)轉換至CPC。目前已有超過45個專利局與超過 25,000名審查人員使用CPC作為檢索工具,使CPC成為國際性的分類標準。

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

TOP