歐盟理事會(Council of the European Union)於2022年5月16日正式通過了資料治理法(Data Governance Act, 簡稱DGA),本法是歐盟執委會(European Commission)於2020年11月提案,經過一年多的意見徵詢與協商,歐盟議會(European Parliament)於今(2022)年4月6日以501票贊成通過,隨後由歐盟理事會通過公布,本法預計將於2023年8月正式生效。
DGA包含幾大面向,除了針對資料中介服務(data intermediation)、資料利他主義(data altruism)、歐盟資料創新委員會(European Data Innovation Board)等機制建立的規定外,在第二章特別針對公部門所持有之特定類別資料的再利用(reuse)進行規定。當公部門持有的資料涉及第三方受特定法律保護的權利時(如涉及第三方之商業機密、智慧財產、個資等),本法規定公部門只要符合特定條件下可將此類資料提供外界申請利用;若為提供符合歐盟整體利益的服務且具有正當理由和必要性的例外情況下,得授予申請對象專有權(exclusive rights),但授權期間不得超過12個月;歐盟應以相關技術確保所提供資料之隱私和機密性。
再者,各會員國應指定現有機構或創建一個新機構擔任提供上述資料類型的單一資訊點(Single Information Point, SIP),以電子方式公開透明地提供資料清單,包含可申請利用之資料的來源及相關描述(至少包含資料格式、檔案大小、再利用的條件等),以提供中小企業、新創企業便利、可信的資料查詢管道。此外,歐盟執委會應建立一個單一近用點(Single Access Point, SAP),提供一個可搜尋公部門資料的電子登記機制(a searchable electronic register of public-sector data),讓使用者得直接搜尋各會員國單一資訊點(SIP)中所提供的資料及相關資訊。
DGA是歐盟2020年2月發布歐盟資料戰略(European Data Strategy)後的第一個立法,歐盟希望透過本法建立一套能提升資料可利用性和促進公私部門間資料共享的機制,以創造歐盟數位經濟的更高價值。
「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
淺談區塊鏈之著作權保護機制 資策會科技法律研究所 法律研究員 翁竹霆 105年11月21日 FinTech,即金融科技,泛指利用科技使金融服務變得更有效率之創新技術。因比特幣(Bitcoin)而廣為人知之區塊鏈(Block chain)技術便是其中之一大代表,其對金融產業帶來破壞性之創新,顛覆金融產業長久以來之概念架構,未來勢必對人類社會帶來不小的影響。 著作權又稱版權,係指在作品上設定權利,並加以保護之制度,長久以來與科學技術相輔相成,共同促進人類社會進步[1]。然網路技術使作品複製與傳播之成本大幅降低,對著作權制度之震撼甚大,管見以為,以點對點(Peer-to-Peer)網路技術為基礎之區塊鏈,恰是著作權制度與網路技術此番挑戰之調和劑,引入區塊鏈技術應用於著作權保護,使新科技不僅是對法制帶來危機,亦可能是帶來轉機,此為本文撰寫之契機。 壹、技術背景 區塊鏈之概念最早可溯及2008年11月,中本聰發表之《比特幣:一種對等式的電子現金系統》[2]。簡言之,區塊鏈是一去中心化之分散式系統,在P2P網路上利用非對稱加密技術記錄每筆行為資訊,具有去中心化、透明性、開放性、自治性、訊息不可篡改、匿名性等六大特徵[3]。比方說在一塗鴉牆上,人人在牆上可畫可看牆上訊息,但僅有訊息之收發當事人能看懂訊息內容。 區塊鏈能防止訊息偽造,提升系統穩定,將傳統交易對人的信任更新為對技術的信任,降低信任成本,當前各國正積極投入區塊鏈之應用。然區塊鏈技術雖有諸多優點,亦不例外有其缺點。本質上,區塊鏈係以成本為代價,換取鏈內資訊之真實與完整,此缺陷反映於該技術之時間與空間成本。 貳、我國法制 區塊鏈發展至今,其應用領域已延伸至各種領域,如數位金融、食安履歷、智財保障等,本文將聚焦於區塊鏈技術對著作權存證之應用機制。 有權利即有救濟之法理,可見於我國大法官會議釋字第243號解釋,故著作權受有侵害時,著作權人應得提訴以維護其權利。然依我國民事訴訟法第277條與刑事訴訟法第232條、第319條之規定,民事原告和刑事告訴人負有證明自己為權利人或被害人之一舉證責任,就採行註冊或登記主義之專利權、商標權而言,權利人之舉證或非難事,惟於採創作主義之著作權而言,此舉證責任難度顯然高於專利權人及商標權人。就此我國著作權法雖有參酌各國立法例,規定如著作人之著作符合一定推定規則,在訴訟上即不負有舉證責任,此即「著作人推定」[4]。依著作權法第13條之著作權人推定之規定,必須在著作之原件或其以發行之重製物上,或將公開發表時,以通常方法表示著作人之本名或眾所周知之別名。反面解釋來說,若著作人一時疏忽或因該創作領域之習慣,未於著作表示著作人本名或別名,著作人將難受推定而享有著作權,創作心血將付之一炬。 我國最高法院92年度台上字第1664號判決之見解認為,著作權人為證明著作權,應保留其著作之創作過程、發行及其他與權利有關事項之資料作為證明自身權利之方法;該判決更指出著作權人至少需證明著作權人身分、著作完成時間、非抄襲之獨立創作;102年度台非字第24號判決重申著作權人未提出或交待研發過程之相關資料,尚不足認其主張之系爭標的係屬著作,亦不得僅憑該造友性證人之宣誓書及證言云云,即謂所述創作歷程可採;而智財法院97年刑智上易字第70號判決中則指出,該件鑑定小組藉由就權利人之營業處所及其創作過程進行實地勘查,推論得知告訴人係真正創作之著作權人。基此,權利人無法受有著作人推定時,需提出證據,跨越三道門檻,方可證明其確有權利,此為現行制度下,著作權人維權所面臨之現實難處。 如前所述,當前著作權人之維權存在著舉證難、週期長、成本高的問題,而區塊鏈在技術上可應用於著作權之存證,與實務見解之著作人身分、著作完成時間、非抄襲之獨立創作等待證事項完美匹配,原因分析如下: 一、著作權人身分 此部分意在證明著作確係主張權利人所創作,證明難度應不高,僅需著作人於登入系統時進行身分驗證,透過如帳號密碼、電子憑證等技術,便能推定系統之使用者確為著作人本人。目前多數網路平台均有採相似技術,於登入系統時確認使用者之身分、年齡等資訊,如結合區塊鏈不可篡改之特性,將更可保存身分資料,確認真實性。惟著作人本人是否具行為能力,甚至具備創作能力,尚非區塊鏈技術可以解決,仍需視個案事實認定之。 二、著作完成時間 區塊鏈在技術上,其區塊之排列係按照歷史時間順序,恰可將我國實務見解強調之創作過程,如日記般記載呈現,清楚確定著作係於何時生成而取得著作權,有助於釐清權利取得先後之爭議。 三、非抄襲之獨立創作 所謂創作過程乃著作人在創作時之相關紀錄,常見之紀錄包含筆記、草稿、設計圖、會議紀錄等。又因我國法律並無明定何謂抄襲之判定基準,法院常以創作過程做為認定系爭著作是否抄襲之依據。惟著作人於訴訟中證明自己確非抄襲存有困難,縱委請公證人進行著作認證,或將著作寄存於特定機構,亦僅能證明自己在特定時點完成著作,仍無法證明系爭著作係自己之獨立創作[5]。若運用區塊鏈具有去中心化、透明性、訊息不可篡改等特徵,即能確保創作過程係被忠實記錄於區塊鏈中,不受變更;過程訊息之完整性與真實性亦可通過科學之檢驗,便於著作人舉證證明系爭著作之創作過程。透過作品之創作緣由、經過細節,輔以庭審詰問質證,即可舉證之著作人確為實際創作者。 綜上,如導入區塊鏈對我國之著作權進行存證保護,作為此技術之新運用,應符合法院實務見解與創作市場需求,具有可行性。 叄、國際實例 台灣近期已有銀行業者將區塊鏈運用於金融業務[6],如欲建立我國區塊鏈之著作權保護機制,或可借鑑國外成功實例,汲取他人操作經驗。目前國際上,將區塊鏈技術運用至著作權保護之實例以歐美為大宗,包括blockai[7]、Ascribe[8]、Verisart[9]等許多網路平台運用區塊鏈對著作權進行存證,本文分別簡介如下: 一、blockai 美國長久以來係由國會圖書館管理著作權事宜,惟實作程序上曠日費時且效率不彰。blockai便在此環境中誕生,作為一運用區塊鏈保護著作權之網站,其旨在提供更簡單有效的新選擇。blockai以區塊鏈建立公眾資料庫搭配圖像比對技術,以證明作品確由著作權人創作進而保障之。其開立之著作權證書雖並無法定證據效力[10],但因區塊鏈信息不可篡改之技術特徵,仍可成為法庭上有相當證明力之證據[11]。 二、Ascribe 德國的Ascribe通過區塊鏈,使作者可以確定作品的權利屬性,安全的進行分享並追蹤作品傳播情況[12],亦透過區塊鏈對作品創作真實性進行認證,在發行時可就發行數量進行限制,旨在使數位內容作品在網路環境中能如同實體作品般具備稀少性。與blockai作法類似,Ascribe也提供著作權證書[13],該證書除作者名稱、作品名稱、完成時間外,更包括所有權人、交易時間,透過紀錄所有權移轉歷程體現數量限制、追蹤傳播情況的功能,有效避免一權多賣。 三、Verisart Verisart亦是透過區塊鏈從事著作權保障的網站,作法係提供一App予使用者,使其可以簡單、快速地驗證作品,使用者包括創作者、收藏家、交易者不等,與其他平台不同處在Verisart操作上通過手機、平板電腦等行動裝置,在作品訊息的資料上,更記載作者當前地點,突顯行動性,係區塊鏈技術與行動裝置的創新結合,以行動裝置使著作權的存證不受時間、地點的桎梏。 雖然區塊鏈目前只能提供每秒150次交易,但對著作權驗證已堪用。蓋著作權存證之目的在於呈現訴訟實務上所重視之創作過程,該過程係一歷史事實之呈現,著眼於訊息之正確與完整,而不要求訊息傳遞之即時性,是以區塊鏈技術上之時間成本,於此並不構成致命缺陷;至於空間成本,因硬碟儲存技術之發展,儲存空間已可以極低成本予以克服。 肆、結論 面對虛擬貨幣之新思潮,各國政府與民間爭相投入區塊鏈之應用研究,望能藉新技術降低產業成本,如中國人民銀行成立中國區塊鏈研究聯盟,美國有利用區塊鏈保障著作權之平台,台灣亦有金融業者加入全球區塊鏈聯盟與國際接軌。從我國著作權訴訟實務上著作人舉證責任視之,通過科學技術保障權利標的進行舉證,與一般證人之證言宣誓有別,證據之證明力更禁得起檢驗。在我國現行法未有著作權登記制度之際,引入區塊鏈於著作權保護之應用,可對現行法制上之舉證難題對症下藥,緩和權利人不易舉證之窘境,使權利人更能獲得其應有之權益保障,落實我國著作權法之立法目的。期待產業主管機關或著作權專責機關,推動運用區塊鏈技術解決創作舉證不易而產生的著作權歸屬糾紛,並進一步利用區塊鏈技術於授權交易,促進原創作品的流通,為我國數位經濟與文化創意發展構築更加完備的發展環境。 [1] 吳偉光,《數字技術環境下的版權法》,知識產權出版社,頁17(2008)。 [2] Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, https://bitcoin.org/bitcoin.pdf (last visited Oct. 3, 2016). [3] 長鋏、韓鋒,《區塊鏈:從數字貨幣到信用社會》,中信出版社,頁54(2016)。 [4] 蕭雄淋,《著作權法論》,五南出版股份有限公司,第七版,頁71(2010)。 [5] 台灣內容市集網站,https://www.tcrm.org.tw/index.php(最後瀏覽日:2016/10/04)。 [6] 華銀區塊鏈應用大躍進,http://udn.com/news/tory/7239/2035353(最後瀏覽日:2016/10/20)。 [7] blockai網站, https://blockai.com/ (last visited Oct. 4, 2016). [8] Ascribe網站, https://www.ascribe.io/ (last visited Oct. 20, 2016). [9] Verisart網站, https://www.verisart.com/ (last visited Oct. 20, 2016). [10] 蔡茜堉,金融科技專利現況,http://www.tipo.gov.tw/public/Attachment/67259101946.pdf(最後瀏覽日:2016/10/04)。 [11] 區塊鏈豈止用於金融?外國新創利用技術保護知識產權,http://unwire.pro/2016/03/15/blockai-uses-blockchain-to-protect-intellectual-property/startups/(最後瀏覽日:2016/10/04)。 [12] 長鋏、韓鋒,《區塊鏈:從數字貨幣到信用社會》,中信出版社,頁229(2016)。 [13] Ascribe證書範例, https://d1qjsxua1o9x03.cloudfront.net/live%2Fcb70ab375662576bd1ac5aaf16b3fca4%2F23964ae7-3bfc-46b4-85d6-05c9f09ba300%2Fcoa%2Fcoa-2016-01-04t12-56-13.pdf (last visited Oct. 20, 2016).
何謂專利適格(Patent Eligibility)的兩階段標準(Two-Step Test)?「專利適格」(Patent Subject Matter Eligibility)用淺白的文字解釋,就是成取得專利的基礎門檻、資格。專利適格的司法排除事項(Judicial Exception)為:「自然法則、自然現象、抽象概念」。而「兩階段標準」的導入,是給司法排除事項「敗部復活」的機會。 可取得專利適格的標的於35 U.S.C. §101有明文:「任何人發明或發現新穎而有用之程序(Process)、機器(Machine)、製品(Manufacture)或物之組合(Composition of Matter),或其新穎而有用之改良,皆得依據本法所定規定及要件就其取得專利權利。」但符合§101的敘述,不必然具專利適格。最高法院表示:「自然法則、自然現象、抽象概念是科學與科技成品的基礎,不可被獨佔。」然而,隨愈來愈多的發明與發現推出、電腦文明的發展,司法排除事項亦受挑戰,在 Mayo v. Prometheus,最高法院首次針對自然法則和自然現象提出「兩階段標準」。基此,美國專利與商標局(USPTO)2012年發表專利審查綱要。後續,Alice v. CLS Bank中,引「兩階段標準」將兩階段標準應用在「電腦應用過程、電腦系統、減免交割風險的電腦可讀媒介」的抽象概念。USPTO也將「兩階段標準」編入專利審查手冊(Manual of Patent Examining Procedure)。 USPTO專利審查手冊公布的「兩階段標準」: 第1步:四種可取得專利適格的標的(35 U.S.C. §101) 程序、機器、製品、物之組合。 第2A步:司法排除事項 假設不是「自然法則、自然現象、抽象概念」三種司法排除事項,則具專利適格;若是司法排除事項,則進入第2B步。 第2B步:是否「更具意義」(Significantly More)? 這一個步驟是「敗部復活」。如果該發明存在「發明概念」(Inventive Concept),則符合「更具意義」,可取得專利適格;反之,則無專利適格。
美國國家製造創新網絡2016年度報告依2014年復甦美國製造與創新法(Revitalize American Manufacturing and Innovation (RAMI) Act of 2014),美國國家製造創新網絡計畫於2016年2月公布年度報告(Annual Report)。國家製造創新網絡計畫的目標是處理發生於執行面的、介於初期基礎研究與技術布建之間的製造技術轉型(manufacturing related technology transition)挑戰。 國家製造創新網絡計畫的關鍵核心之一,是連結創新與製造,而「研發機構」(Institute)在這當中扮演最為關鍵的角色。此所稱之研發機構,係指2013年「國家製造創新網絡先期規劃」(NNMI-PD)以及2014年復甦美國製造與創新法(RAMI Act of 2014)第278s條(c)項所界定之「製造創新中心」(center for manufacturing innovation)——其採公私合營制(public-private partnership),其成員可包括各該業界之業者與學研機構,以及商務部長認屬適當之產業聯盟(industry-led consortia)、技職教育學校、聯邦政府所屬實驗室、以及非營利機構等。「研發機構」將以上之利害關係各方匯聚形成一個創新生態系(innovation ecosystem),以共同因應高風險之製造業挑戰並協助製造業者維持並提升產能與競爭力。 我國於民國105年7月由行政院核定通過之「智慧機械產業推動方案」,亦規劃透過「智機產業化」與「產業智機化」,建構智慧機械產業生態體系,整合產學研能量,並深化智慧機械自主技術中長期布局與產品創新。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現