歐盟正式通過資料治理法(DGA),歐盟資料共享發展跨出一大步

  歐盟理事會(Council of the European Union)於2022年5月16日正式通過了資料治理法(Data Governance Act, 簡稱DGA),本法是歐盟執委會(European Commission)於2020年11月提案,經過一年多的意見徵詢與協商,歐盟議會(European Parliament)於今(2022)年4月6日以501票贊成通過,隨後由歐盟理事會通過公布,本法預計將於2023年8月正式生效。

  DGA包含幾大面向,除了針對資料中介服務(data intermediation)、資料利他主義(data altruism)、歐盟資料創新委員會(European Data Innovation Board)等機制建立的規定外,在第二章特別針對公部門所持有之特定類別資料的再利用(reuse)進行規定。當公部門持有的資料涉及第三方受特定法律保護的權利時(如涉及第三方之商業機密、智慧財產、個資等),本法規定公部門只要符合特定條件下可將此類資料提供外界申請利用;若為提供符合歐盟整體利益的服務且具有正當理由和必要性的例外情況下,得授予申請對象專有權(exclusive rights),但授權期間不得超過12個月;歐盟應以相關技術確保所提供資料之隱私和機密性。

  再者,各會員國應指定現有機構或創建一個新機構擔任提供上述資料類型的單一資訊點(Single Information Point, SIP),以電子方式公開透明地提供資料清單,包含可申請利用之資料的來源及相關描述(至少包含資料格式、檔案大小、再利用的條件等),以提供中小企業、新創企業便利、可信的資料查詢管道。此外,歐盟執委會應建立一個單一近用點(Single Access Point, SAP),提供一個可搜尋公部門資料的電子登記機制(a searchable electronic register of public-sector data),讓使用者得直接搜尋各會員國單一資訊點(SIP)中所提供的資料及相關資訊。

  DGA是歐盟2020年2月發布歐盟資料戰略(European Data Strategy)後的第一個立法,歐盟希望透過本法建立一套能提升資料可利用性和促進公私部門間資料共享的機制,以創造歐盟數位經濟的更高價值。

「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

相關連結
你可能會想參加
※ 歐盟正式通過資料治理法(DGA),歐盟資料共享發展跨出一大步, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8829&no=57&tp=1 (最後瀏覽日:2026/02/15)
引註此篇文章
你可能還會想看
韓國發布人工智慧基本法

韓國政府為支持人工智慧發展與建立人工智慧信任基礎,提升國家競爭力,韓國科學技術情報通訊部(과학기술정보통신부)於2025年1月21日公布《人工智慧發展與建立信任基本法》(인공지능 발전과 신뢰 기반 조성 등에 관한 기본법안,下稱AI基本法),將於2026年1月22日起生效。韓國《AI基本法》為繼歐盟《人工智慧法》(EU Artificial Intelligence Act)之後第二部關注人工智慧的國家級立法,並針對高影響人工智慧(고영향 인공지능)及生成式人工智慧進行規範,促進創新及降低人工智慧風險,將搭配進一步的立法與政策以支持人工智慧產業。 《AI基本法》有以下三個政策方向: 1. 人工智慧基本計畫:由科學技術情報通訊部制定並每三年檢討「人工智慧基本計畫」,經「國家人工智慧委員會」審議後實施,決定產業發展政策、培育人才、健全社會制度等事項。本法並設置人工智慧政策中心及人工智慧安全研究所,提供科學技術情報通訊部所需的研究與分析。 2. 扶持產業發展:以扶持中小企業及新創企業為發展方向,促進產業標準化的基本政策,爭取國際合作及海外發展。 3. 人工智慧倫理與安全性:政府公布人工智慧倫理原則,由相關機構及業者自主成立人工智慧倫理委員會,在政府發布的指引下建立貼近實務面的倫理指引。本法明確要求人工智慧產業必須負擔透明性及安全性義務,政府也推動認驗證制度,以確保人工智慧的可靠性。 韓國《AI基本法》將人工智慧發展方向及社會政策結合,明確要求政府制定人工智慧發展計畫並定期檢討,施行具體措施與設置必要組織,確立政府在人工智慧領域的角色,然產業界對於政府監管力度之意見有所分歧,為《AI基本法》後續相關政策及指引推動種下不確定性,值得持續追蹤相關動態作為我國人工智慧發展策略之參考。

紐約通過法案,將禁止企業使用未能通過偏見審計的自動化招募系統

  紐約市議會於2021年11月10日通過紐約市行政法規的修正法案,未來將禁止雇主使用未通過偏見審計(bias audit)的「自動化聘僱決策工具(Automated Employment Decision Tools)」,避免因為自動化工具導致的偏見與歧視,不當反映於雇主的最終聘僱決策。   於該法所定義之「自動化聘僱決策工具」,係指透過機器學習、統計模型、數據分析或人工智慧之運算,以實質性協助或取代決策過程,影響最終聘僱決定。而聘僱決定包含篩選應徵者以及對員工作成是否晉升之結果。偏見審計由獨立審計員針對自動化聘僱決策工具進行測試,藉以評估該自動化聘僱決策工具對於雇主依法應申報資訊的影響,例如是否影響及如何影響員工性別、族裔、職位、職務等特徵分布情形。該法並規定雇主或職業介紹機構只有在滿足以下條件的前提下,始得使用自動化聘僱決策工具,包括: 一、通過審計義務:自動化聘僱決策工具須於1年之內通過偏見審計(bias audit)。在使用該工具前,應將該最新審計結果摘要及該工具發行日公告於雇主或職業介紹機構的網站上。除非另有規定,如未有公告,應徵者或員工得提出書面要求雇主於30日內提供自動化聘僱決策工具所收集的數據類型、來源及雇主或職業介紹機構之數據保留政策之相關資訊。 二、通知義務:如欲使用自動化聘僱決策工具對居住在紐約市的員工或應徵者進行評估時,雇主應於使用前的10個工作日內通知該員工或應徵者,且應通知用於評估時所使用之工作資格或特質等參數,並允許應徵者或員工申請以替代方式進行評估。   如雇主或職業介紹機構違反上開規定,第一次違反者將承擔500美元的民事懲罰(civil penalty),如連續違反者,對於之後的違反將承擔500至1500美元不等。目前該法案仍待市長簽署,該法案如經市長簽署通過,將於2023年1月1日生效。

日本智慧財產推進計畫2015分析(上)

日本智慧財產推進計畫2015分析(上) 資策會科技法律研究所 法律研究員 蘇彥彰 104年08月26日   日本智慧財產戰略本部於今年6月19日公布了最新一期的「智慧財產推進計畫2015」[1],分析其內容,除仍以智慧財產的創造、保護、活用及三者間的有效連接作為宗旨外,並以少子高齡化與地方經濟衰退、智財糾紛處理機制的使用狀況和便利性、以及內容產業海外拓展的潛力及對智財戰略之重要性為背景,特別提出了「推動中小企業智財活用」、「活化智財紛爭處理機制」、「推動內容產業及週邊產業整體性的海外拓展」等三項核心議題,並分別剖析各項議題其現狀課題及主管部會應努力之方向,其內容如下: 一、推動中小企業智財活用 (一)現狀與課題   日本全國目前約有385萬間中小企業,不僅對於支持日本經濟具有重要地位,同時也是產業競爭力的來源。若中小企業能發展自身的智慧財產(包括技術、品牌等),以經營策略為基礎,有效透過智財戰略的權利化、標準化、隱密化等方式,應可將智慧財產活用於商業行為中,並且成功連結地域經濟的發展。然而以2013年而言,日本中小企業之中,將所擁有之技術或知識等加以權利化,申請發明專利、新型專利或商標其中之一的企業只有約3.3萬間,不到全部中小企業總數的1%[2],可知日本目前將智慧財產活用於商業活動的中小企業非常有限。   而於2015年度的智財推進計畫中,日本依據對智財的掌握度將中小企業區分為「智財活用挑戰型」和「智財活動發展型」二類,前者是指能將自身所擁有的智慧財產和構想加以權利化後,將之活用於產品的開發、生產乃至於拓展海外市場等挑戰性活動之中小企業,後者則是指尚未擁有足以權利化之智慧財產(尤其是技術),對智財的意識尚屬薄弱,生產產品的通路和交易對象偏向固定,多半處於承攬者地位之中小企業。   關於強化中小企業智財戰略的作法,就「智財活用挑戰型」之中小企業而言,有鑑於對於非都會區之中小企業,能從智慧財產和商業經營兩個不同角度提供建言的機能,在現行體制下仍有所不足,故有必要針對如何策略性取得並活用智財,以助於事業經營之經營意識進行強化,特別是思維上應不侷限於申請並取得專利權,而是針對關於權利化、標準化、隱密化進全面性強化輔導的專門體系實為重點;另就「智財活動發展型」之中小企業而言,則將重點置於利用各種可能機會,協助喚起其對智財的認知及意識,特別是對金融機構等中小企業的相關事業人員進行智財啟發。   另一方面,關於對非都會區十分重要的農林水產領域,隨著近年來全球化和資訊化的高度發展,日本認為除需要對於仿冒品和技術外流提出對應作法外,也有必要活用2015年6月開始採用的「地理標示保護制度」[3],以提高品牌價值、強化產業國際競爭力並活化地方經濟。 (二)今後施政方向   日本根據上述的現狀與課題,為強化中小企業等的智財戰略,同時促進大企業、大學和地方中小企業合作活用其智財,指示各主管部會應著手推動下列的施政方向: 1.強化地方中小企業智財戰略:   強化在各個都道府縣的支援據點數量,並且進行諮商體制及支援資源的強化,經由與中小企業的商業活動相關諮詢,發掘中小企業中與智慧財產相關的潛在需求,並且進一步透過智財綜合支援窗口,促進地域性中小企業活用自身之智慧財產,例如將其設計、品牌與活化產業或地域資源連結加以活用,提高中小企業所具有之無形資產之「能見度」,創造高附加價值的產品。 2.強化地方中小企業、大企業以及大學之智慧財產互助:   充實開放專利資料庫,使企業、大學、研究機關等之開放專利可直接透過網路進行整體性檢索,並在各地方行政機關配置支援人力,協助大企業將其所保有但未能有效利用之智慧財產(例如所謂之「休眠專利」),透過相對缺乏外部知識和技術等經營資源,但有意願接受技術移轉之中小企業進行事業化,以達成智財的有效活用;另針對大學與企業間共同研發情形進行調查,了解包括共同研發的專利申請型態、運用狀況和契約實務,以檢討共同研發之專利申請和契約內容的處理方式妥適性,進而從促進大學智財活用目標,以及兼顧中小企業、大企業、大學等個別需求和立場觀點下,設計具有彈性、可有效應用於在大學和企業間的契約內容。 3.推動農林水產領域智財戰略:   為推進農林水產領域的品牌化,在對於新導入的「地理標示保護制度」進行徹底宣導時,也應一併針對與地域品牌戰略有關的「地域團體商標制度」[4]間的選擇/搭配進行介紹,促進兩項制度的實際運用;對於海外市場,則透過與已導入地理表示保 護制度國家間的合作,使正牌日本特產能為當地市場所熟悉,整頓日本各地農林水產品向外輸出的環境。 (三)小結   與日本類似,我國的產業結構亦以中小企業為主,依經濟部中小企業處之統計,2013年我國中小企業有133萬1182家,占全體企業97.64%,就業人數858萬8000人,亦占全國就業人口78.3%[5],足見中小企業不僅是我國經濟之命脈,更是支撐就業及分配所得的基石。   經濟部中小企業處於2013年至2014年6月間,為協助企業經營體質創新發展、創新中小企業智財價值,協助具技術創新之中小企業,進行智慧財產經濟價值及多元智財運用之評估,並輔導企業強化重視智財權及協助導入智財管理制度,以縮短研發時程及節省相關研發投入成本,已完成67家中小企業智財權之短期診斷服務、完成4家中小企業專案輔導、完成2家中小企業產品安規及檢測服務、輔導6家中小企業導入智財管理制度、為企業節省研發先期投入成本650萬元/年、帶動後續投資金額及流通運用衛生收入金額達3085萬元/年等[6],已見相當成效。   我國後續或可參考前述日本作法,除持續加強中小企業智財戰略思維外,對於中小企業與大學或大企業間之智財互助,以及製造業以外之農林水產領域智財品牌化工作投注心力,以進一步實現中小企業之智財活用目標。 [1] 〈知的財産推進計画2015〉,知的財産戦略本部,http://www.kantei.go.jp/jp/singi/titeki2/kettei/chizaikeikaku20150619.pdf(最後瀏覽日:2015/08/14) [2] 〈中小企業・地域知財支援研究会 参考資料〉,特許庁, https://www.jpo.go.jp/shiryou/toushin/kenkyukai/pdf/chusho_chizai_shien/betten.pdf(最後瀏覽日:2015/08/13) [3] 〈地理的表示保護制度(GI)〉,農林水産省,http://www.maff.go.jp/j/shokusan/gi_act/(最後瀏覽日:2015/09/02) [4] 〈地域団体商標制度〉,特許庁,https://www.jpo.go.jp/torikumi/t_torikumi/t_dantai_syouhyou.htm(最後瀏覽日:2015/09/02) [5] 〈2014中小企業白皮書〉,經濟部,頁2(2014),http://book.moeasmea.gov.tw/book/doc_detail.jsp?pub_SerialNo=2014A01203&click=2014A01203#(最後瀏覽日:2015/08/26) [6] 同前註,頁252。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP