歐盟執委會提出《歐洲晶片法案》應對半導體短缺並加強歐洲技術領先地位

  歐盟執委會於2022年2月8日提出《歐洲晶片法案》(European Chips Act),以確保歐盟在半導體技術和應用的供應鏈安全、彈性和技術領先地位。近來全球半導體短缺,迫使汽車及醫療保健設備等眾多領域工廠關閉,部分歐盟成員國的汽車產量於2021年下降三分之一,顯示在複雜的全球地緣政治背景下,半導體價值鏈極度依賴數量有限的參與者。《歐洲晶片法案》將動員公共及私人投資歐洲半導體產業,金額超過430億歐元;並制定政策措施以預防、準備、預測和迅速應對未來任何供應鏈中斷情形,幫助歐盟實現2030年將現行晶片市場占比提升至20%的願景。《歐洲晶片法案》共分成八大章節,涵蓋歐洲晶片倡議、供應安全、監測和危機應對、治理模式、保密處罰及程序等議題。其中《歐洲晶片法案》主要由三大支柱組成,規範內容如下:

  1. 支柱一:歐洲晶片倡議(法案第3條至第9條)。歐洲晶片倡議將對現有關鍵數位技術重新進行戰略定位,以強化歐盟成員國和相關第三國及私營部門的「晶片聯合資源承諾」。歐盟預計將投入110億歐元用於加強研究、開發和創新,以確保部署先進半導體工具、原型設計實驗產線、測試和用於創新生活應用的新設備,培訓員工深入了解半導體生態系統和價值鏈。
  2. 支柱二:供應安全(法案第10條至第14條)。建立半導體「集成生產設施(Integrated Production Facility, IPF)」和「開放歐盟代工廠(Open EU Foundry, OEF)」,透過吸引投資與提高生產能力來建立供應安全的新框架,用以發展先進節點創新及節能晶片。此外,晶片基金將為新創企業提供融資管道,協助技術成熟並吸引投資者;投資歐洲基金(Invest EU)將設置專屬半導體股權投資的選項,以擴大歐洲半導體研發規模。
  3. 支柱三:監測和危機應對(法案第15條至第22條)。建立歐盟成員國和執委會間的協調機制,用以監測半導體供應、估計需求和預測短缺。透過蒐集企業的關鍵情報能發現歐洲主要弱點和瓶頸,從而監控半導體價值鏈穩定。歐盟將彙整危機評估報告並協調各成員國採取歐盟建議的應對方案,以便共同做出迅速正確的決定。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 歐盟執委會提出《歐洲晶片法案》應對半導體短缺並加強歐洲技術領先地位, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8830&no=66&tp=1 (最後瀏覽日:2026/01/25)
引註此篇文章
你可能還會想看
歐美貿易與技術理事會發表第6次聯合聲明,確保雙方於新興技術及數位環境之領導地位

歐美貿易與技術理事會(EU-U.S. Trade and Technology Council,TTC) 2024年4月4日至5日在比利時魯汶舉行第6屆部長會議,依據會後聯合聲明,雙方針對數位轉型所帶來的機遇與挑戰,同意在新興技術和數位環境等面向促進雙邊貿易和投資、進行經濟安全合作,並捍衛人權價值。未來雙方將針對AI、半導體、量子技術和6G無線通訊系統等制定互通機制及標準,簡述如下: (1) AI技術:採取「風險基礎方法」(risk-based approach)實施「可信任人工智慧和風險管理聯合路徑圖(Joint Roadmap for Trustworthy AI and Risk Management),提高透明度以降低公民及社會使用AI的風險;更新關鍵AI術語清單(a list of key AI terms),減少雙方於概念認知上的誤差;承諾建立對話機制,以深化雙邊合作。 (2) 半導體:為促進半導體供應鏈韌性(resilience)與協調(coordination),將延長實施「供應鏈早期預警機制」(joint early warning mechanism)及「透明機制」(transparency mechanism)兩項行政安排,共同解決半導體產業市場扭曲、供應鏈過度依賴特定國家等挑戰。 (3) 量子技術:雙方將成立量子工作小組(Quantum Task Force),以制定統一量子技術標準,加速技術研發。 (4) 6G技術:雙方通過「6G願景」(6G vision),並對於未來研究合作簽署行政安排(administration arrangement),建立6G技術開發共同原則。 歐美雙方期望透過上述作法,促進半導體和關鍵技術研發和供應鏈多元化,以確保經濟安全及落實數位轉型,確保歐美於新興技術和數位環境之領導地位。

美國發布網路事件協調準則

  隨著網路技術的進步,資安事件亦日益加增,為了因應日趨頻繁的網路攻擊,美國總統歐巴馬於2016年7月26日發布了對於美國資安事件發生時聯邦部門間協調之指令(PRESIDENTIAL POLICY DIRECTIVE/PPD-41),該指令不僅提出聯邦政府對於資安事件回應的處理原則,並建立了聯邦政府各部門間對於發生重大資安事件時之協調指引。   指令中就資安事件及重大資安事件進行了定義:資安事件包含資訊系統漏洞、系統安全程序、內部控制、利用電腦漏洞的執行;而重大資安事件則指可能對國家安全利益、外交關係、美國經濟、人民信心、民眾自由或大眾健康與安全發生明顯危害的有關攻擊。 此外,就遭遇資安事件時,列舉出下列幾點作為聯邦政府因應資安事件時之原則:(A)責任分擔;(B)基於風險的回應;(C)尊重受影響者;(D)政府力量之聯合;(E)促進重建及恢復。   聯邦政府機關於因應資安事件時,需同時在威脅、資產及情報支援三方面上做相關之因應。其中司法部透過轄下聯邦調查局(Federal Bureau of Investigation, FBI)、國家網路調查聯合行動小組(National Cyber Investigative Joint Task Force, NCIJTF)負責威脅之回應;國土安全部(Department of Homeland Security, DHS)則透過轄下的國家網路安全與通訊整合中心(National Cybersecurity and Communications Integration Center, NCCIC)負責保護資產之部分,而情報支援部分,則由國家情報總監辦公室(Office of the Director of National Intelligence)下之網路威脅情報整合中心(Cyber Threat Intelligence Integration Center)負責相關事宜。如係政府機關本身遭受影響,則機關應處理該資安事件對其業務運作、客戶及員工之影響。另在遭遇重大資安事件時,為使聯邦政府能有效率因應,指令指出聯邦政府應就國家政策、全國業務及機關間為協調。此外,指令中亦指示國土安全部及司法部應建立當個人或組織遭遇資安事件時得以聯繫相關聯邦機關之管道。   該指令加強了現有政策的執行,並就美國機構組織上於資安事件與現行政策之互動做了進一步之解釋。

日本公正取引委員會啟動以交易優勢不當攫取新興智慧財產之實況調查

  日本公正取引委員會(下稱公取委,其性質等同於我國公平交易委員會)在2019年12月11日的定期記者會上表示,由於近年出現許多關於「智慧財產及knowhow保護不足」的聲音,因此將針對大型企業在與新創、新興企業進行共同合作或研究時,是否有濫用優勢地位不當掠取智慧財產權及專業知識技能(knowhow)的情形,啟動實況調查。   公取委將以書面方式,針對日本國內約1萬家創業10年以內的IT製造新創產業與大企業間交易之實況進行調查。相關報導整理了以下幾種常見的問題交易型態: 獨占智慧財產:(1)契約約定大型企業無須經新興企業許可,即可逕自申請專利;(2)共同研究成果全歸大型企業所有;(3)要求無限制的無償授權。 限制與他人合作:(1)長時間禁止新興企業與其他業界合作;(2)相關專利遭到大企業所限制,導致事業無法拓展。 強勢締約:(1)大型企業對於契約的意思決定過於緩慢;(2)直接交付簽訂好的紙本契約,並告知不得變更契約內容。   公取委表示,因為新興企業具有開放式創新的價值,在與大型企業進行合作時,對於國家產業發展及競爭力的提升,能發揮很大的貢獻。因此藉由實態調查,確保建構出一個自由、公平的良性競爭環境,並預計在2020年依據調查結果,擬定相關指引或方針。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP