JD SUPRA研析發布企業員工營業秘密管理戰略

  根據JD SUPRA於2022年4月29日研析美國Bay Fasteners & Components, Inc. v. Factory Direct Logistics, Ltd.案例,並刊出「制定全面性的營業秘密戰略」一文指出,員工的入職和離職是企業營業秘密糾紛產生的主要風險之一。企業在僱用員工時須避免營業秘密的污染和竊取。員工離職時,企業應採取離職面談與提醒,以防止離職員工洩露營業機密。以下針對員工入職、員工離職兩個情形,整理建議企業應採取之對策。

  員工入職時,為避免新員工帶來任何營業秘密的污染,企業應教育新進員工保護前雇主營業秘密的重要性、如何將營業秘密從know-how區分出來,或是要求員工證明他們不會透露與持有前雇主的機密資訊或任何非公開資訊。然而,為保護企業的營業秘密不被員工竊取,最直接的方法是使用契約中的保密協議、競業禁止條款進行約束,作為保護企業的證據。

  離職面談是防止離職員工向未來雇主揭露企業營業秘密的有效方法。在離職面談時,企業應提供員工入職時所簽訂的保密協議條款與相關任職期間的協議約定,並要求離職員工簽屬確認書證明已被告知應遵守的營業秘密內容範圍及其所負義務,同時企業應記錄離職面談過程的內容。若知悉離職員工未來任職公司,建議以信件通知該公司提醒應尊重彼此的營業秘密。此外,企業在得知員工要離職時,應指示IT部門確認員工電腦登錄及下載歷史紀錄是否有洩漏營業秘密之可疑活動,例如大量讀取文件、使用非公司的IP登入。員工離職後,IT部門應盡快停用該離職員工相關帳號權限,同時考慮資料備份,即使沒有檢測到可疑的活動,也建議備份員工的設備使用狀況和帳號log紀錄,以作為日後面臨爭訟時之證據。

本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
你可能會想參加
※ JD SUPRA研析發布企業員工營業秘密管理戰略, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8831&no=57&tp=1 (最後瀏覽日:2026/01/30)
引註此篇文章
科法觀點
你可能還會想看
歐盟針對數位化單一市場著作權指令法案達成改革性修正

  2019年2月13日,歐盟針對數位化單一市場著作權指令(Directive on Copyright in the Digital Single Market,2016/0280(COD))(下稱著作權指令)之爭議條款第11條及第13條進行討論修正,並達成共識。   從2016年9月,歐盟委員會提出修改新版著作權法,一直到去年9月12日,通過「著作權指令」法案,兩年多的改革過程始終產生多方爭議;其中,最具爭議性的有兩大條款:第11條「連結稅」(link tax),是要求網路平台業者在使用或摘錄其著作內容時,需向上傳的出版、新聞業者支付授權費用,對於Google、YouTube等網路巨擘易造成傳播新聞資訊的阻礙;而第13條「上傳過濾器」(upload filter),則是強調網路平台業者需負監督責任,防止上傳者侵權行為,現今流行的模仿搞笑影片、歌曲混音、翻唱影片等涉及部分著作權問題者,都有可能受到法規影響而大量減少。   近二十年以來,網路平台業者大多可以避免侵權責任,只要他們不知道上傳的內容侵權,並在發現侵權後立刻將內容移除。此次,著作權指令將加強規範於網路平台業者的行為,要求平台業者建立有效過濾機制,適當監督新聞傳播及熱門資訊之分享,並保護出版業、新聞業、文創產業等的著作權,且未來允許網路平台業者須支付授權費給著作權人。   此次修正的著作權指令法案,歐洲議會將預計於3月或4月進行投票,確認修法是否通過。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

日本公布「特定數位平臺之透明性及公正性提升法」之透明性及公正性評鑑指標

日本經濟產業省(METI)於2022年12月22日於官網公布「特定數位平臺之透明性及公正性評鑑」報告(特定デジタルプラットフォームの透明性及び公正性についての評価),首次針對擁有數位平臺的大型IT(Information Technology)企業完成交易機制透明性及公正性評鑑,並要求被評鑑之企業進行改善。 該評鑑依據「特定數位平臺之透明性及公正性提升法」 (特定デジタルプラットフォームの透明性及び公正性の向上に関する法律,以下稱「透明化法」),透明化法於2020年5月通過並已在2021年2月施行。其目的是為了提高交易之透明性以及公正性,具體指定「特定數位平臺」之企業,並列為評鑑對象,課予其有揭露或公開特定訊息,與進行改善的義務。 本次的評鑑內容,是依該法第4條第1項、第8條以及第9條第2項所定,交易條件之資訊揭露義務為基礎,由日本經濟產業大臣指定數位平臺企業(提供者の指定),進行個案評鑑(評価)並要求其改善(勧告)。依據個案評鑑之內容,日本針對數位平臺之透明度及公正性之判斷,歸納出下列具有共通性之指標: 1.企業有揭露交易條件之義務 2.企業有完善交易機制之義務 3.企業有積極處理用戶申訴與糾紛之義務 4.針對應用程式商店(アプリストア),課徵手續費(手数料)與會員付款結帳(課金)方式之限制,企業有詳細說明之義務 5.企業本身或關係企業與平臺其他用戶之間須公平競爭,例如:企業與直營或非直營商店之間,具有利害關係或有優待行為時,企業須公開其管理方針,並列入內部稽核事項,使其能檢視差別對待之正當性。 6.停用帳戶或刪除之手續,企業在30天之前,就該處置之內容和理由,對消費者有通知之義務。 7.退款或退貨之流程,企業有積極和具體說明之義務,且須將處置成果公開。 關於評鑑對象之指定,是依同法第4條第1項所授權,由日本經濟產業省進一步於2021年2月1日頒布政令,以事業種類與規模進行區分。此外,被列為評鑑對象之企業必須在每年5月底前,各自將企業內部的因應措施,提交總結報告,並由經濟產業大臣進行審閱。值得注意的是,依評鑑結果所要求的改善措施,原則上以企業自主改善為要旨,但日本政府目前正商討今後是否需要以強制力介入;對於被列為評鑑企業之後續改善措施及透明化法之推動方向,值得作為我國數位平臺治理政策之借鏡與觀察。

Deloitte 智財調查報告指出企業多重視營業秘密但缺乏管理意識與具體管理措施

據2024年1月5日IAM報導(下稱IAM報導)依據Deloitte 2023年的研究報告(Deloitte IP 360 Survey)指出大部分的企業雖然有認知到營業秘密對於企業而言承載重大的價值,但仍通常缺乏管理的意識和具體措施,然而對於企業來說營業秘密管理卻是具有重要性的。 IAM報導綜整了一篇Deloitte 2023年的研究報告(Deloitte IP 360 Survey,下稱系爭報告),其針對橫跨15個國家、5大產業共57間公司的智慧財產管理成熟度進行調查分析,系爭報告指出大部分的企業針對專利、商標等註冊取得之智慧財產權多擁有成熟且全面的管理措施,但針對其他難以發現的無形資產(“hard-to-find” intangibles),如營業秘密、資料、know-how等,通常缺乏管理的意識和措施,例如:大約有29%的受訪者表示企業「未積極地捕獲」(原文為actively capture,大意指識別、管理和保護)營業秘密;約14%的受訪者表示企業未建立標準化流程或方針以識別營業秘密。並且,針對營業秘密的具體管理作法,IAM報導特別著重以下三點: 1.主動監測:僅僅只有25%的受訪者表示,企業有主動監測營業秘密之產出,並具有相關管制措施。 2.教育訓練:有42%的受訪者表示未受過營業秘密意識的訓練(trade secret awareness training)。IAM報導特別指出,若員工對於營業秘密的範圍以及重要性沒有概念,則營業秘密管理機制的建立也會失去其意義。 3.離職面談:即使有相當大比例的營業秘密訴訟源於離職員工,但在既有離職面談中是否有納入營業秘密意識訓練的調查上,僅有不到一半(47%)的受訪企業表示有做,24%的企業表示沒有做,還有29%的企業不確定是否有做。 綜上所述,系爭報告提出,許多企業在營業秘密的管理上仍有很大的進步空間,並提醒,在訴訟上只有營業秘密擁有者採取「合理保密措施」(包括建立標準化機制)來保護營業秘密時,在法律上才能獲得更大的保護以及獲得損害賠償的機會。 針對營業秘密管理制度建置,企業可參考資策會科法所發布之「營業秘密保護管理規範」,該規範從識別營業秘密開始,到營業秘密使用管理、員工管理(包含人員進用離職時應採取措施、教育訓練)等均有相關要求,可協助企業透過PDCA循環建置系統性營業秘密規範,補足缺乏的營業秘密管理意識和具體保密措施。 本文同步刊登於TIPS網(https://www.tips.org.tw)

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

TOP