俄羅斯聯邦政府於2022年3月7日發布第299號法令(Постановление Правительства Российской Федерации № 299,下稱本法令),規定於有國家利益考量之情況下,得不經授權利用「不友好國家」的專利權。而我國也在前述「不友好國家」名單之列。
具體而言,本法令之解釋脈絡應從俄羅斯民法(Гражданский кодекс Российской Федерации)第1360條談起,該條規定在確保國家安全或保護公民生命與健康之極端必要情況下,俄羅斯聯邦政府有權決定,未經專利權人同意,使用相關發明、新型和工業品外觀設計,惟需儘快通知專利權人,並支付相應之補償金。
2021年10月18日,俄羅斯聯邦政府按民法第1360條第2項規定,頒布第1767號法令(Постановление Правительства Российской Федерации № 1767)確定補償數額為受專利保護之商品與服務所產生實際收益之0.5%。
然而,因烏俄戰爭持續延燒致俄羅斯聯邦政府採取反西方制裁措施之故,其發布第299號法令,針對第1767號法令再次增修補償數額之認定方法,規定:「倘專利權人來自『不友好國家』,則俄羅斯實體或個人未經專利權人同意,使用相關發明、新型或工業設計進行生產、銷售商品、提供勞務及服務時,須向權利人支付權利金為前述活動所產生實際收益之0%」。
基此,第299號法令應限縮在有國家利益考量之情況下(如:與國家安全或保護俄羅斯公民的生命、健康相關),針對使用特定的專利或商品,可免支付專利強制授權的補償金。換言之,本法令不應解讀為,任何專利在俄羅斯都可恣意利用,而無需經權利人同意或支付適當補償。惟因無法預期未來俄羅斯聯邦政府對「不友好國家」會否有其他強制授權情事,故我國經濟部智慧財產局發函通知專利權人,應密切關注相關議題,並預作準備以降低風險。
本文為「經濟部產業技術司科技專案成果」
英國藥物及保健產品管理局(Medicines and Healthcare Products Regulatory Agency, MHRA)於2022年6月22日公布「英國醫療器材監管的未來之公眾諮詢政府回應」(Government response to consultation on the future regulation of medical devices in the United Kingdom),確立未來醫材監管方向。本次諮詢收到將盡900件回應(民眾與業者大約各半),結果顯示民眾業者對於強化醫療器材安全監管的支持。 MHRA將強化MHRA的執法權力,以確保病患安全,並且關注健康不平等議題並減少AI偏見問題;其監管設計上會考量歐盟和全球標準,並致力於建立英國符合性評鑑(UK Conformity Assessed, UKCA)。MHRA於安全方面,將增加製造商、進口商與經銷商的責任,並要求有英國地址的負責人對瑕疵商品負擔法律責任(構成法律責任的要件與製造商同)。其亦將要求製造商賠償被不良事件影響的人、禁止行銷上使用引人錯誤之表示、導入醫材之單一識別碼(Unique Device Identifiers, UDI)與增加註冊所需提供之資料,且製造商須建置上市後不良反應監測系統並回報統計上顯著的不良事件趨勢。創新方面,MHRA欲增設「創新醫療器材上市管道」和「軟體醫材上市管道」,以顧及創新與軟體醫材特殊需求。針對一般軟體醫材(software as a medical device, SaMD)與人工智慧軟體醫材(AI as a medical device, AIaMD)的監管,MHRA僅欲於法規中增加「軟體」的定義,其他規範將由指引的形式公布。此外,其將AIaMD視為SaMD的一種,並不會額外訂定AIaMD相關規範。
複製人類在歐美之法制規範 世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。 包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。 在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。 綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。