日本也有EUA了!新修《藥機法》通過藥物緊急許可制度
資訊工業策進會科技法律研究所
2022年06月13日
去(2021)年12年底日本厚生勞動省發布「緊急時藥物許可制度總結[1]」(緊急時の薬事承認の在り方等に関するとりまとめ)文件,就日本藥物緊急許可制度(緊急承認)進行提案,並建議修法。接著,以該制度為中心之《藥物及醫療器材品質、有效性及安全性確保法》(医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律)(下稱藥機法)修正案,在今(2022)年3月經眾議院通過,4月經參議院通過成立,5月20日公布並即日開始發生效力[2]。主要條文規範在新法第14條之2之2及第23條之2之6之2。
壹、立法背景說明
修法之前,日本藥物上市審查有四種管道:一般許可(通常承認)、先驅審查指定制度(先駆け審査指定制度)、附條件許可(条件付き承認)、特例許可(特例承認)。「一般許可」係無特殊情形下之通常上市管道;「先驅審查指定制度」是針對治療嚴重疾病的劃時代創新藥物所創設之優先審查制度[3];「附條件許可」則是針對有效治療方法少、患者數量少的嚴重疾病的藥物審查制度[4];若遇緊急事件需使用藥物則是走「特例許可」管道使藥品能提早上市[5]。
根據去年日本厚生勞動省之調查[6],在傳染病大流行等類似緊急情況之下,日本當時對於藥品核准的對應方式存有兩大問題。
首先是對應的速度不夠快。在緊急狀況下,對於疫苗及藥物等的優先核准制度,即使是日本當時最快的「特例許可」管道,相較於歐美也較為耗時。以對抗新型冠狀病毒的莫德納疫苗為例,該疫苗在美國取得緊急使用授權(Emergency Use Authorization,下稱EUA)之後,約過了5個月才在日本獲得承認;而新型冠狀病毒的治療藥物Sotrovimab於日本國內的核准也晚於美國4個月[7]。
其二是特別許可的適用對象較窄,「特例許可」管道是為已在國外流通之藥品而設計,因此若是日本藥廠自行研發的疫苗、藥物或是療法,均無法依此管道上市。如日本藥廠塩野義所開發的新型冠狀病毒口服藥,即需要透過附條件許可之制度,或新的緊急許可制度加快上市速度。
鑒於前述原因,日本厚生勞動省參考美國EUA,提出了藥物的「緊急許可制度」。此二制度最大共通特點在於其均非藥品的正式上市制度,通過審查之後僅能在一定期間內上市流通,到期之後原則上應下架[8]。
貳、重點說明
緊急許可制度有四大重點[9],說明如下:
一、發動要件:為防止重大影響國民生命和健康之疾病蔓延,及防止其他健康損害狀況的擴大,有緊急使用之必要,且無使用該藥物以外替代手段時,得申請緊急許可。此處所稱之藥物包括了疫苗、治療藥物、普通藥品、醫療器械等產品。且緊急情況並不限於大規模流行性疾病,核事故、放射性污染、生化攻擊等情況亦適用緊急許可制度。
二、運用標準:在臨床試驗確認安全性的前提下,可以不需要完成有效性的完整試驗,得僅就現有的數據及資訊進行有效性之推定。舉例而言,若在海外進行的大規模驗證臨床研究中獲得了顯著的結果,則以日本受試者為主的臨床研究結果為非必要。
三、核准條件及期限:由於在有效性的階段給予核准,為了確保正確使用核准的藥物,應附上條件以及二年內之期限(有再延長一年之可能)。獲得許可後一定期限內若無法確認有效性,且判斷該醫藥品或器材不適合維持許可狀態時,將撤銷許可。
四、加速特別措施:對GMP檢驗、國家認證、容器包裝等採取特殊措施以加快核准速度。如在申請緊急許可當下,GMP檢驗有實施上困難,可以先暫緩,待核准後再補上檢驗程序。
參、與現存制度差異評析
特例許可是在緊急許可推出之前,在緊急情況下能在短期間內讓藥品上市之方式。特例許可是藥品正式上市流程,而緊急許可是在符合條件後暫時性准許上市,故兩者在範圍、運用基準以及期限等規定上存有明顯差異。
首先在範圍方面,特例許可係為了已在國外流通的醫療用品引進國內而設置,因此日本國內企業自行研發的新疫苗或是新治療藥等,無法透過特例許可上市[10],原則上需要透過一般藥物上市管道,因此新制度對於日本藥廠來說,形同多開闢了一條產品上市的道路。其次,在運用基準方面,特例許可應完整確認安全性及有效性,無法如新制般能僅由現存數據及資料推定該藥物之有效性[11],因此新制可以縮短臨床試驗所花費的時間。最後,由於特例許可為正式之上市許可,僅在簡化一般藥物之審查流程至2-3個月,故其無有效期間之規定[12],而依新制度上市之藥品在有效期間內仍須完成剩下的臨床試驗,否則期限屆至時原則上應下市。
肆、未來展望
由於緊急許可制度剛修法通過,日本國內目前尚未有以此管道核准上市之藥物或疫苗,因此核准程序所花費之時程,能否成功縮短至如美國EUA的三週內尚未可知。目前最有可能以此管道核准上市之藥物為日本藥廠塩野義的新型冠狀病毒口服藥,審查結果預計於7月發表[13],其發展究竟如何,值得我們拭目以待。
[1] 〈緊急時の薬事承認の在り方等に関するとりまとめ〉,厚生勞動省,https://www.mhlw.go.jp/content/11121000/000873996.pdf(最後瀏覽日:2022/06/12)。
[2] 日本參議院網站,https://www.sangiin.go.jp/japanese/joho1/kousei/gian/208/meisai/m208080208042.htm(最後瀏覽日:2022/06/12)。
[3] 〈先駆的医薬品等指定制度(先駆け審査指定制度)〉,獨立行政法人醫藥品醫療機器總合機構,https://www.pmda.go.jp/review-services/drug-reviews/0002.html (最後瀏覽日:2022/06/27)。
[4] 〈医薬品条件付早期承認制度への対応〉,獨立行政法人醫藥品醫療機器總合機構https://www.pmda.go.jp/review-services/drug-reviews/0045.html (最後瀏覽日:2022/06/27)。
[5] 同前註1。
[6] 同前註1。
[7] 〈緊急時の薬事承認の在り方について〉,厚生勞動省,https://www.mhlw.go.jp/content/11121000/000856077.pdf(最後瀏覽日:2022/06/12)。
[8] 同前註。
[9] 〈令和4年の医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律(薬機法)等の一部改正について〉,日本厚生勞動省網站,https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000179749_00006.html(最後瀏覽日:2022/06/12)。
[10] 医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律(昭和三十五年法律第百四十五号)第14條之3第2項。
[11] 同前註4。
[12] 周晨蕙、施雅薰,《科技法律透析》,〈COVID-19疫情下我國藥事法專案核准制度議題-以國際藥物緊急核准上市機制為借鏡〉,第33卷第10期,頁58(2021)。
[13] NHK,〈コロナ飲み薬 塩野義製薬「ゾコーバ」有効性や副作用 承認の可否は〉,2022/06/23,https://www.nhk.or.jp/shutoken/newsup/20220623a.html (最後瀏覽日:2022/06/27)。
去年七月日本成立的「漫畫、動畫盜版對策協議會」上個月開始了所謂「MAG PROJECT」,針對中國、美國與歐洲等海外約100個提供盜版的網站,以約5個月的期間,透過電子郵件集中請求刪除盜版內容。 主要打擊對象為提供影音分享的網站、提供漫畫線上閱讀的線上閱讀網站與累積大量盜版資料的儲存空間網站等,在不聽從刪除請求的場合,向當地法院提起訴訟等法律措施也在此次盜版對策的考慮之列。主要保護對象預計包括在日本海外也相當熱門的「one piece(海賊王)」、「名偵探柯南」等總計約580部作品。 「漫畫、動畫盜版對策協議會」包括有東映動畫、吉卜力工作室、角川、講談社、小學館、集英社等等總計15家企業參加,由CODA(內容海外流通促進機構)負責事務局。 提到盜版,以往主要是重製的漫畫書跟DVD,而現在的主流則是網路。盜版在日本海外網路開始流通的時候,約莫是寬頻開始普及的2006年前後。在盜版流通的背景,除大容量的傳輸變成可能之外,還包括有在美國等地出現的日本動畫熱潮,以及Youtube等動畫分享網站的出現等等因素存在。 根據日本動畫協會的調查,2012年日本動畫製作公司的海外銷售金額為144億日圓,相較最近一期高峰值2005年的銷售金額313億日圓,可謂攔腰折半。另據日本經濟產業省25年度的調查,動畫與漫畫盜版造成的損害,光就美國一地來說,推估高達約有兩兆日圓之多。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
德國資料保護會議通過「哈姆巴爾宣言」,針對人工智慧之運用提出七大個資保護要求德國聯邦及各邦獨立資料保護監督機關(unabhängige Datenschutzaufsichtsbehörden)共同於2019年4月3日,召開第97屆資料保護會議通過哈姆巴爾宣言(Hambacher Erklärung,以下簡稱「Hambacher宣言」)。該宣言指出人工智慧雖然為人類帶來福祉,但同時對法律秩序內自由及民主體制造成巨大的威脅,特別是人工智慧系統可以透過自主學習不斷蒐集、處理與利用大量個人資料,並且透過自動化的演算系統,干預個人的權利與自由。 諸如人工智慧系統被運用於判讀應徵者履歷,其篩選結果給予女性較不利的評價時,則暴露出人工智慧處理大量資料時所產生的性別歧視,且該歧視結果無法藉由修正資料予以去除,否則將無法呈現原始資料之真實性。由於保護人民基本權利屬於國家之重要任務,國家有義務使人工智慧的發展與應用,符合民主法治國之制度框架。Hambacher宣言認為透過人工智慧系統運用個人資料時,應符合歐盟一般資料保護規則(The General Data Protection Regulation,以下簡稱GDPR)第5條個人資料蒐集、處理與利用之原則,並基於該原則針對人工智慧提出以下七點個資保護之要求: (1)人工智慧不應使個人成為客體:依據德國基本法第1條第1項人性尊嚴之保障,資料主體得不受自動化利用後所做成,具有法律效果或類似重大不利影響之決策拘束。 (2)人工智慧應符合目的限制原則:透過人工智慧系統蒐集、處理與利用個人資料時,即使後續擴張利用亦應與原始目的具有一致性。 (3)人工智慧運用處理須透明、易於理解及具有可解釋性:人工智慧在蒐集、處理與利用個人資料時,其過程應保持透明且決策結果易於理解及可解釋,以利於追溯及識別決策流程與結果。 (4)人工智慧應避免產生歧視結果:人工智慧應避免蒐集資料不足或錯誤資料等原因,而產生具有歧視性之決策結果,控管者或處理者使用人工智慧前,應評估對人的權利或自由之風險並控管之。 (5)應遵循資料最少蒐集原則:人工智慧系統通常會蒐集大量資料,蒐集或處理個人資料應於必要範圍內為之,且不得逾越特定目的之必要範圍,並應檢查個人資料是否完全匿名化。 (6)人工智慧須設置問責機關進行監督:依據GDPR第12條、第32條及第35條規定,人工智慧系統內的控管者或處理者應識別風險、溝通責任及採取必要防範措施,以確保蒐集、處理與利用個人資料之安全性。 (7)人工智慧應採取適當技術與組織上的措施管理之:為了符合GDPR第24條及第25條規定,聯邦資料保護監督機關應確認,控管者或處理者採用適當的現有技術及組織措施予以保障個人資料。 綜上所述,Hambacher宣言內容旨在要求,人工智慧在蒐集、處理及利用個人資料時,除遵守歐盟一般資料保護規則之規範外,亦應遵守上述提出之七點原則,以避免其運用結果干預資料主體之基本權利。
英國氣候過渡計畫小組公布氣候揭露報告框架與實施指南英國氣候過渡計畫工作小組(Transition Plan Taskforce, TPT)在2022年11月8日公布其氣候揭露報告框架草案(Disclosure Reporting Framework)、實施指南,以及技術性附錄,用以輔導英國企業擬定氣候過渡計畫,並在技術性附錄中提供與氣候揭露相關的指標與準則等詳細資訊,供企業參考。 氣候過渡計畫是英國淨零政策相當重要的一環。英國財政部長於2021年COP26大會上宣布成立工作小組,研擬氣候過渡計畫的規範,要求英國企業公布清晰且可交付的計畫,英國財政部在2022年4月宣布TPT成立,負責建立一套英國適用、並且可與其它國際準則進行轉換的氣候過渡計畫準則。TPT根據氣候相關財務揭露工作小組(Task Force on Climate-related Financial Disclosures, TFCD)、國際永續準則理事會(International Sustainability Standards Board, ISSB)、及格拉斯哥淨零金融聯盟(the Glasgow Financial Alliance for Net Zero, GFANZ)等現有成果,另增若干細節,在2022年11月提出此一框架草案及指南等文件。 TPT框架建議企業以企圖心、行動力和當責性為原則,分階段設定過渡計畫目標。而企業的氣候揭露應包括五大項目:基礎事項(如企業目標)、執行策略(如企業營運)、擴大參與策略(如與價值鏈的連結)、使用的指標與目標(如財務指標)以及治理(如董事會的監督與報告),這些在實施指南中都有詳細的說明。 TPT框架自公布起即公開徵求各界意見至2023年2月28日,並廣邀各界就其內容進行測試,提供意見反饋,這些都將供作TPT修訂框架之參考,預計2023年完成草案的最終版本。TPT的文件雖不具法律效力,但是其內容將成為英國金融行為管理局(Financial Conduct Authority, FCA)未來修訂上市公司及金融機構相關氣候過渡計畫揭露規則時的依據,其後續發展值得關注。