德國聯邦內政部(Bundesministerium des Innern und für Heimat, BMI)於2022年4月28日公布「數位德國-主權、安全性,及以公民為中心」(Digitales Deutschland – Souverän. Sicher. Bürgerzentriert.)政策文件。BMI作為確保網路與資訊安全,與政府機關數位轉型之聯邦主管機關,在「以公民和企業為數位行政之主要服務對象,並加強國家行政效率」之前提下,規劃2025年前預計達成之目標與具體措施,分述如下:
(1)以公民與企業為中心的國家服務數位化:政府應以使用者導向(Nutzerorientierung)作為行政數位化的指導原則,推動簡易、具透明度,且可隨時隨地使用之數位行政服務,包含制定如何提供良好數位化行政服務之指引、調修《網路近用法》(Onlinezugangsgesetz)等。
(2)國家現代化:未來聯邦法律應於立法程序中,確認數位化之可行性,並刪除其中有關書面形式之要求。另應加強聯邦政府內部之系統整合、促進行政工作數位化,並透過訓練計畫讓員工適應數位化環境。
(3)資訊安全架構的現代化:調整德國聯邦資訊安全局(Bundesamt für Sicherheit in der Informationstechnik, BSI)職權,強化BSI與資訊技術安全中央辦公室(Zentrale Stelle für Informationstechnik im Sicherheitsbereich, ZITiS)等資安主管機關之數位能力與技能。
(4)資料合法開放與使用:加強行政機關之資料能力與相關分析技能,並以歐盟「資料法案」(Data Act)為法律基礎,為資料品質與資料使用建立標準。
(5)強化數位主權(Digitalen Souveränität)與互通性:為確保國家在數位領域的長期能量,必須加強個人與公部門的數位能力,使其能在數位世界中獨立、自主與安全地發揮作用。與此同時,BMI亦與各邦及聯邦資訊技術合作組織(Föderale IT-Kooperation, FITKO)合作,建立可信賴之標準與介面,並借助開源軟體(Open-Source)、開放介面與開放標準,降低對個別技術供應商之依賴。
本文為「經濟部產業技術司科技專案成果」
日本一名男子要求法院下令谷歌(Google)刪除他因性犯罪被捕的新聞搜索結果,遭最高法院以侵害言論自由駁回。這是該國最高法院首次做出有關網際網路搜尋的「被遺忘權」相關裁決。 法院網站張貼的聲明表示:「唯有在保護隱私權的價值明顯高於資訊公開時,才會准許刪除(有關這項指控的內容)。」而東京法院亦對於刪除網路搜尋紀錄的基準做出定義,如: 1. 報導的事實性質及內容 2. 事實傳達的範圍及隱私受害程度 3. 當事人的社會地位及影響力 4. 報導的目的及意義 5. 社會的狀況 6. 報導中公開當事人真實姓名及住址的必要性 而日本法院雖已界定被遺忘權之判斷基準,但門檻極為嚴格,臺灣先前亦有前職棒球團老闆訴請Google移除其涉及假球案(法院判決其無罪)之相關連結,但遭敗訴之結果。 相較於亞洲對於被遺忘權行使之結果,歐洲法院於2014年時裁決:當個人資料係「不適當」、「無關連」、「已無關連且多餘」,而且「與公共利益無關」。民眾就有權行使被遺忘權,要求包括Google等搜尋引擎將其相關資料移除。自2014年5月29日統計至今歐洲地區行使被遺忘權之資料,Google收到685,622個要求,並完成「移除要求」評估的網址總數為1,896,454個網址,刪除率達到43.2%。 由上可知,亞洲(如日本與我國)與歐洲對於被遺忘權行使仍有判斷基準上之差異,故後續亞洲國家的相關發展還有帶持續關注。
加拿大配合數位隱私法之推行,公告安全防護措施違反之規則草案加拿大數位隱私法(Digital Privacy Act)於2015年6月18日獲得皇室御准,該法目的係為修訂規範私部門運用個人資料的聯邦個人資料保護及電子文件法(Personal Information Protection and Electronic Documents Act, PIPEDA)。該法有多個章節於公告時便即刻施行,但仍有部分章節需待日後其他行政機關公告配套之法規後始能正式施行,例如該法的重點章節之一:「安全防護措施之違反」(Breaches of Security Safeguards)。 歷經約莫兩年,加拿大創新、科學及經濟發展部(Innovation, Science and Economic Development Canada)於2017年9月2日公告安全防護措施違反之規則草案(Breaches of Security Safeguards Regulations),以及規則衝擊分析聲明(Regulatory Impact Analysis Statement)。草案自公告時起開放30天供相關利益關係人發表意見,未來將和數位隱私法的「安全防護措施之違反」同時生效施行。 草案制定目的在於確保加拿大本國人若遇有資料外洩且具有損害風險時,可收到精確的相關資訊。私部門對本人的通知應包含使本人可理解外洩的衝擊和影響的詳細資訊。草案確保加拿大個人資料保護公署(Office of the Privacy Commissioner of Canada)之專員亦能獲得有關資料外洩的確實且對等資訊,並可監督、確認私部門遵守法規並執行。草案詳載私部門於通報個人資料保護公署時應提交的資訊,以及通知本人時應提供的資訊,且不限制私部門額外提供其他資訊。遇有資料外洩情事而故意不即時通報個人資料保護公署或通知本人者,最高將可處十萬美金罰鍰。
初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵 資訊工業策進會科技法律研究所 2019年03月15日 壹、事件摘要 於2018年03月18日晚間10時許,美國亞利桑那州(Arizona,下稱Arizona)一名49歲的婦人,遭到配備Uber自動駕駛系統之車輛[1],在運行自動領航模式(Autopilot)下撞擊,雖然該婦人立即送往醫院,但仍回天乏術而在醫院中去世。就在前開事故發生後,Arizona州長Doug Ducey因此下令其暫停測試。[2] 此外,同年12月11日晚間10時許,在我國有一輛配備自動輔助駕駛功能的Tesla,疑似駕駛人精神不濟因而未能及時注意車前狀況,導致車禍發生,雖然肇責是否牽涉Tesla之自動輔助駕駛功能或駕駛人本身有無疲勞駕駛等情事,有待進一步釐清。[3] 綜上,不論測試或道路駕駛,現今社會已不乏具有一定自動駕駛等級之車輛於路上行駛,然而在推廣、研發或應用自動駕駛車輛(下稱自駕車)的同時,若不幸發生類似前開新聞之(車禍)事故時,相關肇事責任究應如何釐清,隨著我國已於2018年12月19日公布無人載具科技創新實驗條例以積極推動自駕車相關應用,更愈顯重要,為解決前開肇事相關疑慮,本文擬針對民事上之「過失」本質,反思自駕車相關應用可能延伸的事故責任,是否因應科技發展而有不同的過失內涵。 貳、重點說明 承上,面對自駕車相關科技與應用的世界洪流,若發生車禍等交通事故時,當事人相關之損害賠償請求,仍大多以民法上之侵權行為作為基礎,雖事故肇因種類眾多,亦常見各類的肇因共同造成事故發生,但本文考量相關議題繁複,以下僅就非依軌道行駛之自駕車、駕駛人過失內涵等框架下依序進行初探與反思: 一、我國侵權行為損害賠償係以行為人有無具抽象輕過失為斷 車禍之發生,若涉及駕駛人之行為者,受有不論財產或人身損害之人而欲請求賠償者,無論係依據民法第184條以下何條侵權行為之規定(即民法第184條第1項前段、同條項後段或第191條之2等規定),請求駕駛自駕車之人賠償,前提均為駕駛人具有過失,差別僅在舉證責任是否由請求權人(受有損害之人)負擔。 承上,既然前開侵權行為之重要成立要件為過失,其具體內容為則為駕駛人之注意義務應至何種程度,然在我國民事過失責任之架構上,有不同程度上之區分,即分別為抽象輕過失、具體輕過失及重大過失三種。申言之,抽象輕過失為欠缺應盡善良管理人之注意者義務;具體輕過失者為欠缺應與處理自己事務為同一注意者;重大過失者為顯然欠缺普通人之注意者[4]。 對此,實務見解[5]以及學者[6]歷來均認侵權行為之過失標準,應以行為人是否克盡客觀化之過失標準─抽象輕過失,倘否,則應負擔過失之賠償責任,是以,就此脈絡推論,自駕車之駕駛人若有違善良管理人注意義務致車禍發生且使他人受損害,即應負損害賠償責任。 二、駕駛人注意義務與自駕車自動駕駛程度間之互動 根據引領世界自駕車標準的領銜者─國際汽車工程師學會(Society of Automotive Engineers International,下稱SAE)所分類之自動化駕駛等級,區分為等級0至等級5(共6個等級),而等級3後之自駕車即開始逐漸將環境監控的任務從駕駛人移轉至車輛本身,而駕駛人僅在特殊條件下,方須接管駕駛車輛,更甚在等級5時是由自駕車在任何狀況下均可自行駕駛,不過在等級2前之等級,環境監控之任務大多在駕駛人身上,自駕車至多僅係協助運行駕駛人之指令[7]。 然而,自駕車駕駛人因車禍所生之侵權行為責任,誠如前述,係以駕駛人存有抽象輕過失作為前提,而過失之本質,則係雖非故意,但按其情節,(1)行為人(駕駛自駕車之人)應或能注意,卻不注意,或(2)雖可預見侵權行為(車禍肇事)之事實發生,但確信不發生[8],就此,在SAE分類等級2以前之自駕車,因監控環境之任務仍由駕駛人負擔,則該類等級自駕車之駕駛人應與一般車輛之駕駛人,負擔相同侵權行為之注意義務內容(或程度),但等級3至等級5自駕車之各式應用情境,車輛行駛環境之相關監控資訊已轉由車輛本身處理、控管,則駕駛人是否對於自駕車之車禍發生,仍具有可預見性,或得注意並防免之,則不無疑慮。 參、事件評析 綜上,本文所提不同等級自駕車,是否當然得以繼續適用傳統民事侵權行為之過失標準判斷駕駛人有無過失,實有相當程度上之衝突,蓋若自駕車之駕駛人對於行車環境資訊已不如駕駛一般車輛時,實難期待駕駛人對於車禍之發生有何預見可能,或在遇見後積極防免結果發生,倘若一概遵循傳統對車禍侵權行為之高注意義務要求─抽象輕過失責任,或將產生使不明瞭或難以預見該事故原因發生之人,卻必須就非因己誤之結果負責,某程度上似有違過失責任之本質,而質變成為無過失之擔保責任。 據此,本文認為,若要解決前開損害發生須有補償或賠償之問題,或可(1)透過保險、基金等方式填補損害,或(2)具體化等級3至等級5自駕車之駕駛人應負何等注意義務,如駕駛人須隨時處於得以接管車輛操作之狀態,使等級3以上之自駕車所應盡之注意義務與傳統侵權行為之注意義務脫鉤處理(3)與商品責任間進行相關的調和等,然而無論如何,對於此等問題或疑慮,究竟應採何方向或多方進行,甚或以其他方式解決,則有待後續更進一步的討論與分析。 [1] Uber於該州進行自動駕駛車輛之測試。 [2] ADOT director's letter to Uber halting autonomous vehicle tests, ADOT, https://www.azdot.gov/media/News/news-release/2018/03/27/adot-director's-letter-to-uber-halting-autonomous-vehicle-tests (last visited Mar. 21, 2019); Ryan Randazzo, Arizona Gov. Doug Ducey suspends testing of Uber selfdriving cars, azcentral, Mar. 26, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/26/doug-ducey-uber-self-driving-cars-program-suspended-arizona/460915002/ (last visited Mar. 21, 2019); Ryan Randazzo, Bree Burkitt & Uriel J. Garcia, Self-driving Uber vehicle strikes, kills 49-year-old woman in Tempe, azcentral, Mar. 19, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/19/woman-dies-fatal-hit-strikes-self-driving-uber-crossing-road-tempe/438256002/ (last visited Mar. 21, 2019). [3] 蘋果日報,〈台灣首例!特斯拉自動駕駛闖禍 國道上撞毀警車〉,2018/12/12,https://tw.appledaily.com/new/realtime/20181212/1482416/ (最後瀏覽日:2019/03/21)。 [4] 96年台上字第1649號判決。 [5] 19年上字第2476號判例。 [6] 王澤鑑,《侵權行為法》,自版,頁308-309(2011)。 [7] SAE International Releases Updated Visual Chart for Its “Levels of Driving Automation” Standard for Self-Driving Vehicles, SAE International, https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles (last visited Mar. 22, 2019). [8] 97年度台上字第864號判決。
美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。