美國聯邦審計署(Government Accountability Office, GAO)於2022年5月9日發布「航空轉型:經利害關係人確認之先進空中交通議題」(Transforming Aviation: Stakeholders Identified Issues to Address for 'Advanced Air Mobility')研究報告。未來,先進空中交通(Advanced Air Mobility, AAM)服務可透過小型或高度自動化(highly-automated)電動垂直起降航空器(eVTOL)翱翔於天際,不僅可提供載人或載物服務、減少交通壅塞,並可應用於救援與醫療運輸等領域。GAO透過訪談36位利害關係人,意識到AAM發展關鍵在於相關法制環境之整備速度。基此,GAO於研究報告中,整理當前各AAM新創業者於開發與落實上面臨之4大問題,分別簡述如下:
(1)航空器檢定標準:美國聯邦航空總署(Federal Aviation Administration, FAA)對於航空器之檢定規範,目前尚未涵蓋具備AAM新功能之載具,如電力推進或垂直起降等。
(2)起降場與電力之基礎設施:FAA尚未制定垂直機場降落設施,及航空器電池充電需求之電力基礎設施相關標準。
(3)提高公眾載具安全性接受度:AAM產業須證明此類航空器之安全性、可靠性、低噪音與商用可行性,以支持該產業之發展與成長。
(4)作業人員所需之各種培訓與認證標準:飛行員與維修技術作業人員需接受相關新功能培訓。惟利害關係人指出可能面臨高教育成本、缺乏工作場域多樣性、機會意識(awareness of opportunities)不足,及培訓能力有限等問題。
本文為「經濟部產業技術司科技專案成果」
在德國,由於納粹的醫學實驗歷史,人類胚胎研究一向是極為敏感的議題,並且為了研究用途摧毀胚胎也有極大的倫理爭議。德國下議院於2001年立法禁止從胚胎中粹取幹細胞後,在現行法規下幹細胞研究者只可以進口2002年1月1日以前製造的胚胎幹細胞供使用。不過在科學家一再表達只有極少量的細胞株可有效提供研究的關切下,德國下議院日前以346票對228票通過幹細胞法之修正,將截止日期(cut-off date)之規定由2002年1月1日,修正為2007年5月1日,藉此放寬對人類胚胎幹細胞研究的限制。 不過此次國會的修法仍引起支持與反對胚胎幹細胞研究人士的激烈爭論,支持一方表示現行截止日期的規定強烈影響德國幹細胞的研究,德國研究基金會(German Research Foundation)即強調目前全球有超過500個細胞株,但德國研究人員卻只被允許使用21個老舊且部分遭到污染的細胞株。另一方面,在德國主教的集會上,佛萊堡(Freiburg)大主教鄒立區(Robert Zollitsch)則對放寬現行限制提出警告,他表示「研究的自由不該與對生命的基本保障等量齊觀」。 修法後,德國研究人員將可透過國際合作進口使用2007年5月1日以前所製造的胚胎幹細胞。這是正反雙方妥協下的結果,但是德國對於限制胚胎幹細胞研究的基本立場是否會由此開始鬆動,則仍待後續觀察。
日本發布關鍵基礎設施資訊安全對策第4次行動計畫為了持續維持日本國內以及與東京奧運舉辦相關的關鍵基礎設施服務的安全性,日本內閣網路中心於2017年4月19日公布關鍵基礎設施資訊安全對策第4次行動計畫。 在第4次行動計畫,關鍵基礎設施防護目的主要是以關鍵基礎設施的功能保證為考量,盡量減少關鍵基礎設施IT故障的發生,並提升從事故中恢復的速度。因此,第4次行動計畫除持續檢討並改善第3次行動計畫原有政策外,較重要的變革為OT(Operation Technology)的重視與風險對應機制整備。在安全基準整備與落實情況方面,要求關鍵基礎設施產業須將OT的觀點融入人才培育。在資訊分享制度方面,分享的資訊範圍應包含IT、OT與IoT的資訊,並排除資訊分享的障礙。而在風險管理部分,日本從功能保證的觀點出發,新增風險情況對應準備的要求,包含事業持續計畫的提出與緊急應變措施的制定等。而在防護基礎強化上,該行動計畫認為關鍵基礎設施產業的IT、OT人員及法務部門必須依其內部資訊安全策略共同為關鍵基礎設施安全而跨組織合作。 另外,第4次行動計畫變更電力領域關鍵基礎設施的重要系統,從原有的運轉監視系統變更為智慧電表,以及新增化學、信用卡與石油三大關鍵基礎設施領域的業者、關鍵系統與因IT故障對關鍵基礎設施可能造成的危害影響。
簡介人工智慧的智慧財產權保護趨勢近期人工智慧(Artificial Intelligence, AI)的智慧財產權保護受到各界廣泛注意,而OpenAI於2023年3月所提出有關最新GPT- 4語言模型的技術報告更將此議題推向前所未有之高峰。過去OpenAI願意公布細節,係由於其標榜的是開源精神,但近期的報告卻決定不公布細節(如訓練計算集、訓練方法等),因為其認為開源將使GPT- 4語言模型面臨數據洩露的安全隱患,且尚有保持一定競爭優勢之必要。 若AI產業選擇不採取開源,通常會透過以下三種方式來保護AI創新,包括申請專利、以營業秘密保護,或同時結合兩者。相對於專利,以營業秘密保護AI創新可以使企業保有其技術優勢,因不用公開技術內容,較符合AI產業對於保護AI創新的期待。然而,企業以營業秘密保護AI創新有其限制,包含: 1.競爭者可能輕易透過還原工程了解該產品的營業秘密內容,並搶先申請專利,反過來起訴企業侵害其專利,而面臨訴訟風險; 2.面對競爭者提起的專利侵權訴訟,企業將因為沒有專利而無法提起反訴,或透過交互授權(cross-licensing)來避免訴訟; 3.縱使企業得主張「先使用權(prior user right)」,但其僅適用在競爭者於專利申請前已存在的技術,且未來若改進受先使用權保護之技術,將不再受到先使用權之保護,而有侵犯競爭者專利之虞,因此不利於企業提升其競爭力。 綜上所述,儘管AI產業面有從開源轉向保密的傾向,但若要完全仰賴營業秘密來保護AI創新仍有其侷限,專利依舊是當前各企業對AI領域的保護策略中的關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
政府採購雲端服務新興模式暨資安一體考量之研析