瑞士洛桑國際管理發展學院公布《2022年IMD世界競爭力年報》

  瑞士洛桑國際管理發展學院(International Institute for Management Development, IMD)於2022年6月15日公布《2022年世界競爭力年報》(IMD World Competitiveness Yearbook)(以下簡稱本報告)。本報告以「經濟表現」(Economic Performance)、「政府效能」(Government Efficiency)「企業效能」(Business Efficiency)和「基礎建設」(Infrastructure)四大指標(含333項子標)評比63個經濟體。評比結果:全球競爭力前5名依序為丹麥、瑞士、新加坡、瑞典與香港;而其他重要經濟體之排名,如臺灣第7、美國第10、中國第17、南韓第27與日本第34。

  丹麥34年來首次位列第一,去(2021)年居首的瑞士則跌至第2名。究其原因,丹麥因公共債務與政府赤字的減少,其「經濟表現」大幅提升。至於新加坡,雖於2019年與2020年皆居於榜首,去年則滑落至第5名。對此,IMD主管Arturo Bris表示,新加坡嚴格的防疫政策,限制了國際服務與人員流動,致使去年的全球競爭力排名下滑。然新加坡今年排名上升係因「經濟表現」強勁,其「國內生產總值」增長,「國內經濟」、「國際貿易」和「科技基礎建設」等子標皆位居全球第一,但「經營管理」卻排名第14、「科學基礎建設」排名第16、「健康與環境」更排名第25,仍處於相對較後的位置。若欲提升排名重回榜首,新加坡政府需設法應對外部經濟發展所帶來的挑戰(如全球供應鏈中斷、商品價格上漲等)、協助仍受COVID-19疫情影響的行業復甦經濟,並幫助企業走向低碳未來等永續發展方面作改善。

  而我國,由去年第8名進步至今年第7名,突顯我國在全球COVID-19疫情肆虐之情況下,整體競爭力仍獲國際肯定。政府亦將以本報告之評比結果為鑒,協助企業加強全球布局,並積極推動前瞻基礎建設、六大核心戰略產業、2050淨零排放等產業轉型升級,期盼能持續提升我國競爭力。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 瑞士洛桑國際管理發展學院公布《2022年IMD世界競爭力年報》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8882&no=55&tp=1 (最後瀏覽日:2025/08/20)
引註此篇文章
你可能還會想看
歐洲議會全體會議投票通過《資安韌性法》草案,以提高數位產品安全性

歐洲議會於2024年3月12日全體會議投票通過《資安韌性法》(Cyber Resilience Act)草案,後續待歐盟理事會正式同意後,於官方公報發布之日起20天後生效。該草案旨於確保具有數位元件之產品(products with digital elements, PDEs)(下簡稱為「數位產品」)具備對抗資安威脅的韌性,並提高產品安全性之透明度。草案重點摘要如下: 一、數位產品進入歐盟市場之條件 課予數位產品之製造商及其授權代理商、進口商與經銷商法遵義務,規定產品設計、開發與生產須符合資安要求(cybersecurity requirements),且製造商須遵循漏洞處理要求,產品始得進入歐盟市場。 二、數位產品合規評估程序(conformity assessment procedures) 為證明數位產品已符合資安及漏洞處理要求,依數位產品類別,製造商須對產品執行(或委託他人執行)合規評估程序:重要(無論I類或II類)數位產品及關鍵數位產品應透過第三方進行驗證,一般數位產品得由製造商自行評估。通過合規評估程序後,製造商須提供「歐盟符合性聲明」(EU declaration of conformity),並附標CE標誌以示產品合規。 三、製造商數位產品漏洞處理義務 製造商應識別與記錄數位產品的漏洞,並提供「安全更新」(security updates)等方式修補漏洞。安全更新後,應公開已修復漏洞之資訊,惟當製造商認為發布相關資訊之資安風險大於安全利益時,則可推遲揭露。 四、新增開源軟體管理者(open-source software steward)之義務 開源軟體管理者應透過可驗證的方式制定書面資安政策,並依市場監管機關要求與其合作。當開源軟體管理者發現其所參與開發的數位產品有漏洞,或遭受嚴重事故時,應及時透過單一通報平臺(single reporting platform)進行通報,並通知受影響之使用者。

RFID電子式護照的應用與法律爭議

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

什麼是日本研究組合?

  所謂的技術研究組合乃以試驗研究為目的,以「開發業界共同關鍵技術」為主要目的之非營利性質法人,日本至今共成立了兩百多個研究組合,主要透過專法創設之特殊性質法人制度,並賦予技術研究組合諸多稅賦優惠。在組織上,賦予技術研究組合亦有組織變更、分割及合併之可能,技術研究組合得以分割或轉換為公司,將研究成果直接轉化為產業化應用,技術組合之特色有以下幾點: 1.研究組合須至少二人以上之組合員發起:除企業公司外,日本國立大學法人與產業技術研究法人亦可為組合員 ,凡從事產業技術研發政府研究單位與國立大學,皆可將人力資源、研發成果投入與產業合作之技術研發活動,並從事進行試驗研究管理成果、設施使用與技術指導等事業活動 2.研究組合研發活動可運用「產業合作」、「產官學共同研發」兩種模式進行:未來技術研發組合進行組織變更成為股份有限公司時,大學或產業技術研究法人組合員亦可獲得公司股份,增加學研界加入技術研究組合誘因。3.研究組合組織型態彈性利於研發成果事業化應用:技術組合可視情況進行組織變更、合併與分割,就組織型態有更大變更與調整彈性。著眼於技術研究組合若產出相當之研發成果,則可以透過變更為公司型態,迅速將其研發成果予以產業化,亦可透過變更組織型態,而在籌措資金上有更為靈活運用方式使產業活動穩健持續地經營。

TOP