美國紐約最大的珠寶公司Tiffany 於二○○四年向美國聯邦南紐約地方法院對全世界最大的拍賣網站eBay所提的商標侵權訴訟乙案,在該年度造成電子商務業界的一陣風暴。Tiffany 在起訴狀當中主張, eBay網站中所賣方所拍賣Tiffany的珠寶百分之七十三為仿冒品。雖然,Tiffany發函請求eBay移除刊登在eBay網站上,約一萬九千筆拍賣Tiffany仿冒品的網頁;但Tiffany仍提起訴訟主張eBay未對仿冒詐欺之情形盡監督之責,而造成該公司之營業損失,故須負起共同侵權責任。其它世界知名的精品公司,如 Louis Vuitton Moet Hennessy及Dior Couture也於二○○六年對eBay未盡監督之責而侵害其商標乙事在巴黎地方法院提起訴訟,並要求eBay賠償該兩大精品業者二○○一年至二○○五年之營業損失。
Tiffany的代表律師針對eBay所提起的答辯在六月一日提出補充意見狀表示,原起訴狀所主張的商標權範圍並未限定或引用特定的商標,因此eBay的主張無理由。
Tiffany v. eBay乙案,原定於今年 (二○○七年) 五月十四日在南紐約地方法院進行法官審判程序 (Bench Trail) ,但因五月八日承審法官下令進行訴訟和解程序而延期。今年四月中旬,Tiffany追加訴訟主張eBay侵害其所有的十一個包括Tiffany經典藍色的顏色、PALOMA PICASSO等商標。eBay對上開Tiffany的追加訴訟提出反對意見,主張Tiffany所追加主張eBay侵權的十一個商標未按正當程序提出,將會使得eBay因提出證據的時間不足而造成裁判偏頗之虞,故請求承審法官駁回Tiffany的追加訴訟。
按Tiffany追加eBay所侵害商標數目之目的,係為增加eBay的法定損害賠償義務;因為美國法律規定,商標侵權的法定損害賠償義務計算方式以所受侵害仿冒的商標商品或服務之種類為準,每一項美金一百萬元之賠償金。
為了使歐洲的著作權法規更符合數位時代及單一市場所需,歐盟執委會(European Commission)於2016年9月所提出的「數位單一市場著作權指令」(The Directive on Copyright in the Digital Single Market)提案,於今年2月13日由歐洲議會(European Parliament)與歐盟理事會(Council of the EU)、歐盟執委會達成最終協議,歐洲議會與歐盟理事會並分別於3月26日及4月15日通過提案,歐盟理事會於4月17日簽署正式指令。新指令的重點內容包含: 文字與資料探勘(Text and data mining):第3條規定,研究組織為了科學研究而需對文字與資料探勘時,得例外對著作進行重製、擷取(extraction)。 強化著作人和表演者在數位環境中的地位:第14條規定,當著作人和表演者將著作權讓與或授權給出版商後,出版商必須定期向著作人和表演者告知這些著作的利用情形。另外,第15條規定,如果著作人和表演者覺得先前約定的報酬太低時,可以要求與出版商重新磋商更公平且適當的報酬。 賦予新聞內容重製權及向公眾傳播權:規定於第11條,使用新聞的內容(尤其網路新聞)時,須向新聞出版者取得重製權及向公眾傳播權的授權。另外,本次通過的正式指令,已無之前提案中具有爭議的「須得到新聞出版者同意才能使用新聞頁面超連結」條文內容,而無先前的超連結稅(Link Tax)爭議。 網路服務提供者義務:第13條規定,網路服務提供者如Instagram、YouTube等,有義務透過有效的機制,迅速刪除未經著作權人授權許可的內容,並防止這些未經授權的內容重新上架,以保護著作權人的利益。 不過,從歐盟執委會提案之後,第13條就引起了德國民眾的強烈反彈,從今年2月最後一個禮拜開始,德國各大城市展開了一連串名為「反對歐盟著作權改革法案」(gegen EU-Urheberrechtsreform)的抗議活動,包含線上連署及上街遊行,並已擴散至其他歐盟會員國。抗議訴求認為,使用所謂的「上傳過濾器」(Upload-Filter)會對網路的言論自由和多樣性產生巨大影響,由於在實際操作上,網路服務提供者只會依據著作權人所提供的著作授權清單,利用上傳過濾器自動過濾未得到授權的內容,因此經合法使用其他著作後所創作的新著作(例如文章內含有合法引用的內容),可能會成為被過濾、刪除的對象,因為上傳過濾器可能無法判別法定例外的合法使用。所以上傳過濾器被認為是有爭議的審查手段。 雖屢有爭議,但本次通過數位單一市場著作權指令,使歐盟的著作權法規更能適應當今數位世界,在音樂串流服務、影音點播平台、新聞彙整平台、以及各種社群平台已成為人們接觸著作和新聞的主要門戶時,加強網路使用者享有的自由和權利,創作者也將獲得更好的保護和報酬,以創造更繁榮的網路經濟。
EU要求OFCOM落實固網批發價格管制在2009年6月26日,英國電信業者Opal Telecom針對英國電信(BT) 的固網批發價格的問題(Fixed Termination rate),向OFCOM提起爭議仲裁。不過在OFCOM做出裁決之前,歐盟執委會(The European Commission)已要求OFCOM應該就固定網路的批發價為適當之價格管制,並提供所有通訊業一致性的固定費率。 執委會做出這樣要求的原因,是著眼於今日英國在終端服務(termination services),業者仍然處於壟斷狀態,且有調高終端服務費用之可能,恐不利於促進競爭。 基於改善這樣的現象,並為促進市場競爭和歐盟規範的一致性,執委會提出要求: 應無差別(non-discrimination)使所有業者均得利用原有之固定網路來提供服務,並確保在相同環境、相同條件下進行公平競爭;同時,建議採取對於固定網路費率之管制,以促進市場競爭,其結果對固定通訊服務的競爭者與消費者而言,最為有利。 OFCOM已在2009年10月23日公布裁決結果,基於通訊市場公平競爭和歐洲市場一致的發展的原則下,BT提供Opal固定網路通路(network access)和服務互通(service interoperability)尚屬適當,至於費率部份,則以適用BT在電信業者價格表(Carrier Price List)的批發價為宜。
美國「人工智慧應用管制指引」美國白宮科學與技術政策辦公室(The White House’s Office of Science and Technology Policy , OSTP)於2020年1月9日發布「人工智慧應用管制指引」(Guidance for Regulation of Artificial Intelligence Application),為美國政府機關起草人工智慧規範並進行管制時提供指引,該指引內要求各機關之規範應遵循以下10項人工智慧原則: 一.公眾對AI之信任:政府對AI之管制或其他措施應促進AI之可靠性、健全性,且於應用上應具備可信性。 二.公共參與:政府應提供機會讓利害關係人參與AI管制規範立法程序。 三.科學實證與資訊品質:科學實證與資訊品質:政府機關發展AI之相關技術資訊,應透過公開且可驗證之方式提供給大眾參考,以提高大眾對AI之信任與協助政策制定。 四.風險分析與管理:應採取以風險為基礎之分析評估方法,確認哪些風險係可接受之風險,或那些風險代表無法接受之損害或所失利易大於預期利益。 五.利益與成本:政府於擬定相關規範時,應小心評估AI對於整體社會之利益,與預期外之效果。 六.彈性:法規應持續滾動檢視與調修以因應AI之創新應用。 七.公平且無歧視:政府應針對AI之應用與決策,考量公平與無歧視相關議題。 八.揭露與透明:透明度與揭露程序之建立可提升公眾對AI應用之信任。 九.安全:政府應特別注意AI系統內所儲存或傳輸資訊之安全與相關安全維護控制措施。 十.跨機關合作:政府各部會或機構間應相互合作與分享經驗,以確保AI相關政策之一致性與可預測性。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。