瑞士洛桑國際管理發展學院公布《2022年IMD世界競爭力年報》

  瑞士洛桑國際管理發展學院(International Institute for Management Development, IMD)於2022年6月15日公布《2022年世界競爭力年報》(IMD World Competitiveness Yearbook)(以下簡稱本報告)。本報告以「經濟表現」(Economic Performance)、「政府效能」(Government Efficiency)「企業效能」(Business Efficiency)和「基礎建設」(Infrastructure)四大指標(含333項子標)評比63個經濟體。評比結果:全球競爭力前5名依序為丹麥、瑞士、新加坡、瑞典與香港;而其他重要經濟體之排名,如臺灣第7、美國第10、中國第17、南韓第27與日本第34。

  丹麥34年來首次位列第一,去(2021)年居首的瑞士則跌至第2名。究其原因,丹麥因公共債務與政府赤字的減少,其「經濟表現」大幅提升。至於新加坡,雖於2019年與2020年皆居於榜首,去年則滑落至第5名。對此,IMD主管Arturo Bris表示,新加坡嚴格的防疫政策,限制了國際服務與人員流動,致使去年的全球競爭力排名下滑。然新加坡今年排名上升係因「經濟表現」強勁,其「國內生產總值」增長,「國內經濟」、「國際貿易」和「科技基礎建設」等子標皆位居全球第一,但「經營管理」卻排名第14、「科學基礎建設」排名第16、「健康與環境」更排名第25,仍處於相對較後的位置。若欲提升排名重回榜首,新加坡政府需設法應對外部經濟發展所帶來的挑戰(如全球供應鏈中斷、商品價格上漲等)、協助仍受COVID-19疫情影響的行業復甦經濟,並幫助企業走向低碳未來等永續發展方面作改善。

  而我國,由去年第8名進步至今年第7名,突顯我國在全球COVID-19疫情肆虐之情況下,整體競爭力仍獲國際肯定。政府亦將以本報告之評比結果為鑒,協助企業加強全球布局,並積極推動前瞻基礎建設、六大核心戰略產業、2050淨零排放等產業轉型升級,期盼能持續提升我國競爭力。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 瑞士洛桑國際管理發展學院公布《2022年IMD世界競爭力年報》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8882&no=57&tp=1 (最後瀏覽日:2025/08/19)
引註此篇文章
你可能還會想看
歐洲現正規劃研提「負責任奈米研究」執行規範

  奈米科學及奈米技術具有促成技術﹙enabling technologies﹚的特性,具有多元應用潛能,一般期待其能為許多領域﹙例如化學、材料科學、健康、以及能源等﹚帶來永續利益。其中,研究是這項目標中最重要的環節,一方面能發展出有產業應用價值的新技術,另一方面也可以調查奈米科技的潛在風險並建立妥適的控管措施。   為了營造安全且負責任的奈米科技研發環境,並為安全且負責任之應用及使用鋪軌,歐盟執委會﹙European Commission﹚正在規劃研提一個關於負責任奈米科技研究相關的自願執行規範﹙voluntary code of conduct﹚。   本執行規範將採用由歐盟執委會推薦﹙recommendation﹚的方式,由其邀請各會員國、產業界、大學、資助機構﹙funding organizations﹚、研究人員及其他與此相關的利害關係人次來執行。歐盟執委會本身也會將此項原則落實在相關研發政策當中。目前,歐盟執委會在今﹙2007﹚年7月9日至9月21日將對外進行諮詢﹙consultation﹚,所收集到的各項意見會作為本執行規範的基礎。

加拿大政府就生成式人工智慧對著作權的影響進行公眾諮詢

加拿大政府於2023年10月23日至12月4日針對「生成式人工智慧對著作權的影響」(consultation on the implications of generative artificial intelligence for copyright)進行公眾諮詢,以期了解生成式人工智慧對於加拿大著作權市場之變化,進而修訂《著作權法》(Copyright Act),本次諮詢文件中討論重點整理如下: 1.文字和資料探勘(Text and Data Mining, TDM):是否需要因應TDM修改加拿大原本的著作權法,包含著作權法中合理使用行為(29條)和暫時性重製行為(30.71條)等得不構成侵害之例外條款。學者、AI使用者以及AI技術團體大多持肯定見解,認為TDM行為中使用的著作時不需要權利人的著作權授權;然創意產業則多持否定見解,認為不應該為TDM創設例外,否則將會使得TDM所使用之作品原著作人無法主張權利以獲得授權金。 2.人工智慧生成作品之著作人身分及著作權歸屬:因利用生成式人工智慧所創作或輔助創作之文字、圖像和音樂有作者身分不明確之虞,因此加拿大政府希望可以對此加以澄清,並討論是否需要修改原本的著作權法案中相關規定。針對作者身分不明確之爭議,加拿大政府提出了三種可能的規範模式: (1)闡明著作權保護只適用於自然人創作的作品; (2)將人工智慧生成作品之作者歸屬於在創作作品時運用技能和判斷力的自然人,凡自然人可以在人工智慧技術輔助下創作的作品中貢獻足夠的技能和判斷力,即可被視為該作品的作者; (3)為人工智慧生成的作品創設一套新的權利。 3.人工智慧之侵權責任:人工智慧係透過大量的資料庫來生成一項作品,過程中可能出現侵害他人著作權之情形,而加拿大現行的著作權法框架下很難認定侵權行為之責任歸屬。加拿大現行的著作權法要求被侵權人(著作人)必須證明侵權人明知其重製行為侵犯他人著作權,且就該他人著作加以重製,但一般人難以瞭解人工智慧系統開發及訓練過程,因此難證明人工智慧系統研發與利用過程中的業者、工程師或其他相關人等是否有侵權行為。因此加拿大政府希望利害關係人就此議題提供更多意見,以協助將來修法、提高市場透明度。 生成式人工智慧雖然提供了便利的創作方式並帶來巨大經濟利益,卻也可能侵害他人著作權,因此平衡著作人之權利並兼顧經濟發展是加拿大政府及國際社會課正積極解決的議題。

歐洲議會全體會議投票通過《資安韌性法》草案,以提高數位產品安全性

歐洲議會於2024年3月12日全體會議投票通過《資安韌性法》(Cyber Resilience Act)草案,後續待歐盟理事會正式同意後,於官方公報發布之日起20天後生效。該草案旨於確保具有數位元件之產品(products with digital elements, PDEs)(下簡稱為「數位產品」)具備對抗資安威脅的韌性,並提高產品安全性之透明度。草案重點摘要如下: 一、數位產品進入歐盟市場之條件 課予數位產品之製造商及其授權代理商、進口商與經銷商法遵義務,規定產品設計、開發與生產須符合資安要求(cybersecurity requirements),且製造商須遵循漏洞處理要求,產品始得進入歐盟市場。 二、數位產品合規評估程序(conformity assessment procedures) 為證明數位產品已符合資安及漏洞處理要求,依數位產品類別,製造商須對產品執行(或委託他人執行)合規評估程序:重要(無論I類或II類)數位產品及關鍵數位產品應透過第三方進行驗證,一般數位產品得由製造商自行評估。通過合規評估程序後,製造商須提供「歐盟符合性聲明」(EU declaration of conformity),並附標CE標誌以示產品合規。 三、製造商數位產品漏洞處理義務 製造商應識別與記錄數位產品的漏洞,並提供「安全更新」(security updates)等方式修補漏洞。安全更新後,應公開已修復漏洞之資訊,惟當製造商認為發布相關資訊之資安風險大於安全利益時,則可推遲揭露。 四、新增開源軟體管理者(open-source software steward)之義務 開源軟體管理者應透過可驗證的方式制定書面資安政策,並依市場監管機關要求與其合作。當開源軟體管理者發現其所參與開發的數位產品有漏洞,或遭受嚴重事故時,應及時透過單一通報平臺(single reporting platform)進行通報,並通知受影響之使用者。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP