能源清醒!歐洲競爭電信協會主張應重新討論網路建設的付出與碳排放影響的歸責

  「能源清醒」(Energy Sobriety)作為一種概念逐漸被普及到政策和法令之中。目的在於使各種使用者對於自身行為所產生的碳排放有所警醒、並且就其行為所產生的碳排放負起責任,進而在產品、設備的選擇和使用習慣上重新進行考慮。藉由選擇減少消費、或是更改消費模式來更好的保護地球資源、減少碳排放。能源清醒的概念和能源效率的概念不同,他透過社會文化的改變來達到能源節省的目的、而不是仰賴技術的革新。

  基於此一概念,歐洲競爭電信協會(European Competitive Telecommunications Association)於2022年9月發表對於網路基礎建設投資的聲明,希望能就對於網路建設的付出是否公平展開討論。

  該協會表示,雖然其身為電子通信業者的成員們在歐洲綠色政綱(European Green Deal)上有所投入、致力於減少環境足跡,但是網路流量的穩定增加卻限制了電子通信業者對於減少溫室氣體排放的努力。而這種現象在行動網路(mobile network)的使用上特別明顯。因為將高品質(如4K、8K或HDR)的影像傳輸到行動裝置或小尺寸螢幕設備上對於用戶體驗的提升並沒有實際上的幫助,但是卻會使得網路頻寬(bandwidth)被大量消耗以及大量的溫室氣體在過程中被排放。這使得營運商將網路規模擴大(更多的核心網路和RAN設備、更多的設備和地點),因此有了更高的耗能,對於環境的影響也更加劇烈。對此,協會提議透過監管方式來改善這種情形,認為應要求內容供應商應採取非歧視性的、與內容無關的方式使影音解析度適應螢幕尺寸的解決方案,從而減少不必要的網路流量和浪費,並且給予其適度的獎勵措施。

  該協會認為,任何符合能源清醒的模式都應該受到數位生態圈的集體鼓勵。而其中的每個參與者也應該要注意和承認自己的行為所產生的影響,並作為一個能源使用者和造成碳排放的實際個體負起責任。對此,歐洲競爭電信協會已經準備好就此提議進行討論與辯論。

相關連結
※ 能源清醒!歐洲競爭電信協會主張應重新討論網路建設的付出與碳排放影響的歸責, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8906&no=57&tp=1 (最後瀏覽日:2025/08/18)
引註此篇文章
你可能還會想看
德國外交部發布《聯邦政府對中國戰略》明確與中國競爭及繼續合作方向

德國外交部(Menü Auswärtiges Amt)於2023年7月13日發布《聯邦政府對中國戰略》(China-Strategie der Bundesregierung),該戰略目的係提供使德國各個聯邦機關能夠協調其對中政策的架構,重點如下: (1)德國對中國戰略為歐盟對中國政策的一部分:依據歐盟理事會2020年10月決議,德國聯邦政府支持以國家元首、政府首腦以及歐盟機構領導人位階,與中國建立新的高峰會談等。 (2)與中國雙邊關係:期待透過兩國合作,保護氣候、環境、生物多樣性、促進全球食物安全,以及實施2030永續發展進程等。 (3)深化德國與歐盟關係:維護全球供應鏈與價值鏈的安全性;避免關鍵領域資訊科技過度依賴中國,加強數位主權(digital sovereignty);積極參與歐盟對外投資審查的檢視與安全評估;針對新興關鍵科技,修正出口管制清單等。 (4)國際合作:在貿易政策與多元化的層面,更有效地實施環境、社會與人權的保護;與夥伴國合作共享對於關鍵科技如半導體、人工智慧及綠色科技的價值等。 (5)協調政策與建構對中國的專業知識:德國聯邦政府將定期召開針對中國議題的部長級會議,並公開對中國戰略的實施情形;鼓勵各級機關、公民團體建構其中國專業知識掌握的量能。 該戰略作為加強德國在中國問題上的參考,是否能作為歐盟其他會員國在對中國政策上的參考,有待持續關注。

由美國「二十一世紀通訊與視訊接取無障礙法」談無障礙通訊傳播環境之建立

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

從國外案例談軟體漏洞資訊公布與著作權防盜拷措施

TOP