WIPO發布《世界智慧財產權指標》,2021年全球智慧財產權申請數量仍持續增加

  世界智慧財產權組織(WIPO)於2022年11月21日發布了《2022年世界智慧財產權指標(World Intellectual Property Indicator, WIPI)》。WIPO以全球150個國家智慧財產主管機關的統計資料、產業的市場調查資料作為分析標的,針對全球專利權(含新型專利)、商標權、工業設計、植物品種權、地理標示、創意經濟(出版業)的整體發展狀況進行調查。

  根據2022年的分析結果顯示,與過往經濟衰退期間的歷史經驗不同,在COVID-19疫情期間,2021年全球智慧財產權的申請數量持續增加。如:
  1、「專利」的申請量增加了3.6%。
  2、「商標」的申請量(含指定類別)增加了5.5%。
  3、「工業設計」的申請量增加了9.2%。
  4、「植物品種」的申請量增加了12%。

  以商標為例,2021年全球共提交了約1390萬件商標申請,申請量從金融海嘯後(2009年)至今連續12年成長。其中,亞洲商標主管機關受理的商標申請量占全球的69.7%,較2011年時的44.7%有顯著成長;受理商標申請的前五名國家分別為:
  1、中國國家知識產權局(CNIPA):約950萬件。
  2、美國專利商標局(USPTO):約90萬件。
  3、歐盟智慧財產局(EUIPO):約50萬件。
  4、印度專利、設計及商標管理局(CGPDTM):約49萬件。
  5、英國智慧財產局(UK IPO):約45萬件。

  此外,指標針對「非母國申請案(Non-resident trademark applications)」的產業別進行分析,分析結果顯示2021年各國商標申請人至外國市場尋求商標保護的前十大產業分別為:
  1、研究與技術:20%
  2、健康醫事:13.8%
  3、服裝配件:12.8%
  4、休閒教育:10.5%
  5、居家設備:9.7%
  6、農業產品與服務:9.6%
  7、商業金融:9.5%
  8、運輸機械:6%
  9、營建:5.2%
  10、化學:2.8%

  再者,指標中分析上述產業在各國商標申請案件中的占比,可作為我國企業全球布局的參考:
  1、研究和技術產業:歐盟21.3%、英國20.4%、日本18.7%、美國17.7%。
  2、農業產品與服務產業:中國25.2%、韓國18.4%、俄羅斯14.2%、印度15.1%、土耳其14.8%。
  3、健康醫事產業:印度23.1%、日本13.9%、中國11.3%;
  4、商業金融產業:巴西26.3%、土耳其23.3%。

  WIPO從2009年至今每年發布《世界智慧財產權指標》給各國政府參考,期待各國政府持續建構更完善的智慧財產制度,協助個人、企業保護其創新,以促進全球經濟的發展。

  本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
※ WIPO發布《世界智慧財產權指標》,2021年全球智慧財產權申請數量仍持續增加, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8916&no=55&tp=1 (最後瀏覽日:2025/12/08)
引註此篇文章
你可能還會想看
歐盟科技策略新趨勢-生物經濟策略

  為引領歐盟各會員國邁向以生物發展為導向之經濟體時代,歐盟指委會(European Commission)乃於2012年2月13日通過歐盟永續生物經濟體策略計畫-Innovation for Sustainable Growth-a Bioeconomy for Europe,期待藉此引導歐盟邁想一個創新且低排放之永續發展經濟體。   隨著全球人口逐年增長,並預計於2050年邁向全球9億總人口數之關卡,但自然資源之相對有限,因此歐盟指委會認為歐盟經濟體需隨著時代變遷趨勢及早轉型,並且強化其發展永續性。為協助歐盟各會員國因應全球局勢變化,歐盟指委員進一步於其永續生物經濟體策略計畫中提出三大重點策略-1.強化創新,並發展新興科技,進而為生物經濟體做準備;2.建置並強化生物經濟體相關市場與競爭力;3.透過相關政策之研擬,加強立法者與產業間之聯結性。而除了透過前述之三大重點策略以做為發展生物經濟體之基礎外,歐盟指委會亦希望能藉由歐盟Horizon 2020計畫下之各相關配套措施,以及各項研發經費之投注,進行各項生物和綠色科技,如能源、奈米科技、和資通訊技術(ICT)等相關領域之創新研發,進而導引歐盟經濟體邁向一個全新永續新境界。   目前歐盟會員國如丹麥、芬蘭、德國、愛爾蘭、和荷蘭皆已提出相關生物經濟體策略,而國際間如加拿大、中國、美國、和南非對此議題,亦位處於發展中或是已發展階段。以生物科技為主之知識經濟發展導向乃為當前全球經濟發展趨勢,如何連結科技研發創新,進而發展永續經濟,實為一值得關注與思考之問題。

美國生技學名藥法案不利廉價藥品供應

  近來國際藥商逐漸將研發眼光放在市面上既存的蛋白質生技學名藥(follow-on biologics, Biosimilar, Biogenerics)上,顧名思義,生技學名藥乃是仿製市面上的生技藥品,而在臨床效用上與所仿製的藥品完全一樣或只是做些微調整改良。   目前生技學名藥並無法適用Hatch-Waxman Act下之「簡易新藥申請」(Abbreviated New Drug Application,ANDA)程序,原因在於生技製藥通常為複雜的大分子,難以確認其與上市產品100%相同,故美國FDA採取另立新法管理的態度,但迄今仍未通過任何法律。在歐盟,由歐洲藥品管理局(European Medicines Agency)所發布的生技學名藥核准準則只要求藥商提出其分子具有與上市藥品相同之物理特性及毒性安全數據即可上市,故現行已有少部分生技學名藥在歐洲上市。   因而藥商在無簡易上市的程序下,只能循完整的臨床有效性試驗程序。事實上這與現行美國擬對生技學名藥上市管理所提出的法律草案內容一致,目前提出於國會山莊的三個法律草案版本(Sen. Ted Kennedy’s S.1695, Sen. Judd Gregg’s S.1505 & Rep. Anna Eshoo’s H.R.5629)皆強制大部分生技學名藥上市前必須經過完整的臨床有效性試驗。   相反的,傳統學名藥在自1984年的Hatch-Waxman Act以來,並無需進行最昂貴的第二及第三階段之臨床試驗,也因此對於病患、消費者等而言,生技學名藥價格並不友善,通常只比其所仿製的上市藥品便宜一至二成,在有市場利基的功用調整下則有可能更貴;這比起競爭激烈的學名藥價格動輒較其原始藥品便宜五成以上相去甚多。並且所費不貲的臨床實驗亦將使生技學名藥只有擁有龐大資源的少數大藥廠能取得入場門票,因此專家預估生技學名藥的立法並不會像Hatch-Waxman Act一樣,進而形成生技學名藥業(generic biotech industry),而是形成所謂的生技仿製業(me-too industry)。

歐盟希望類比電視頻譜供給WiMax之用

  歐盟資訊社會和媒體委員會委員Viviane Reding女士,2007年6月1號在希臘一場和寬頻議題相關的演講說中建議,當歐洲電視類比頻段逐漸淘汰時,這些超高頻段頻譜(Ultra High Frequency)應該分派給寬頻網路技術(例如:WiMax)之用。   WiMax是Worldwide Interoperability for Microwave Access的縮寫,一般中譯為「全球互通微波存取」,是一種新興的無線通訊技術,其傳輸速度最高可達70Mbps,傳輸範圍最廣可達30英哩,對個人、家庭與企業的行動化將有很大助益。由於WiMax目前頻譜規劃限制在5.7FHz和3.4GHz區段裡,如果安排在500到800MHz超高頻段上,那WiMAX基地台涵蓋的範圍將提高,並能大大地減低成本。   Viviane Reding女士在該演說中提到,「無線寬頻技術的出現,是克服偏遠或農村地區數位落差現象的重要要素,且是處理數位落差的唯一世代機會。因此,需要一個頻譜的政策框架,釋放這種潛力。」她同時也提到,如果期望以低價擁有更大幅度的無線寬頻速度,則需要釋出具高傳輸性的頻譜。簡言之,決策者應仔細探究從類比轉換成數位化後所產生的數位落差問題,同時思考有無可能在UHF開拓出空間給無線寬頻。

美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

TOP