WIPO發布《世界智慧財產權指標》,2021年全球智慧財產權申請數量仍持續增加

  世界智慧財產權組織(WIPO)於2022年11月21日發布了《2022年世界智慧財產權指標(World Intellectual Property Indicator, WIPI)》。WIPO以全球150個國家智慧財產主管機關的統計資料、產業的市場調查資料作為分析標的,針對全球專利權(含新型專利)、商標權、工業設計、植物品種權、地理標示、創意經濟(出版業)的整體發展狀況進行調查。

  根據2022年的分析結果顯示,與過往經濟衰退期間的歷史經驗不同,在COVID-19疫情期間,2021年全球智慧財產權的申請數量持續增加。如:
  1、「專利」的申請量增加了3.6%。
  2、「商標」的申請量(含指定類別)增加了5.5%。
  3、「工業設計」的申請量增加了9.2%。
  4、「植物品種」的申請量增加了12%。

  以商標為例,2021年全球共提交了約1390萬件商標申請,申請量從金融海嘯後(2009年)至今連續12年成長。其中,亞洲商標主管機關受理的商標申請量占全球的69.7%,較2011年時的44.7%有顯著成長;受理商標申請的前五名國家分別為:
  1、中國國家知識產權局(CNIPA):約950萬件。
  2、美國專利商標局(USPTO):約90萬件。
  3、歐盟智慧財產局(EUIPO):約50萬件。
  4、印度專利、設計及商標管理局(CGPDTM):約49萬件。
  5、英國智慧財產局(UK IPO):約45萬件。

  此外,指標針對「非母國申請案(Non-resident trademark applications)」的產業別進行分析,分析結果顯示2021年各國商標申請人至外國市場尋求商標保護的前十大產業分別為:
  1、研究與技術:20%
  2、健康醫事:13.8%
  3、服裝配件:12.8%
  4、休閒教育:10.5%
  5、居家設備:9.7%
  6、農業產品與服務:9.6%
  7、商業金融:9.5%
  8、運輸機械:6%
  9、營建:5.2%
  10、化學:2.8%

  再者,指標中分析上述產業在各國商標申請案件中的占比,可作為我國企業全球布局的參考:
  1、研究和技術產業:歐盟21.3%、英國20.4%、日本18.7%、美國17.7%。
  2、農業產品與服務產業:中國25.2%、韓國18.4%、俄羅斯14.2%、印度15.1%、土耳其14.8%。
  3、健康醫事產業:印度23.1%、日本13.9%、中國11.3%;
  4、商業金融產業:巴西26.3%、土耳其23.3%。

  WIPO從2009年至今每年發布《世界智慧財產權指標》給各國政府參考,期待各國政府持續建構更完善的智慧財產制度,協助個人、企業保護其創新,以促進全球經濟的發展。

  本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
※ WIPO發布《世界智慧財產權指標》,2021年全球智慧財產權申請數量仍持續增加, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8916&no=57&tp=1 (最後瀏覽日:2026/02/07)
引註此篇文章
你可能還會想看
美國FTC認為政府擴大拜杜法權介入權適用範圍將引發專利叢林危機

美國聯邦貿易委員會(Federal Trade Commission, FTC)於2024年2月6日針對「介入權指引草案」(Draft Interagency Guidance Framework for Considering the Exercise of March-In Rights)提交意見書。介入權指引草案由美國國家標準技術研究院(National Institute of Standards and Technology, NIST)2023年12月8日公布於聯邦公報(Federal Register),旨在訂立政府機關發動《拜杜法》(Bayh-Dole Act)第203條「介入權」(March-in rights)之判斷流程與標準,以確保介入權發動具一致性。根據草案內容,當受政府補助之研發成果若經商業運用後被以「不合理價格」販售,而未滿足民眾健康與安全需求時,提供補助之政府機關應適時介入。 然而,介入權指引草案將「價格合理性」納入介入權發動要件,被美國各界質疑係為達成拜登政府打擊藥價之政策目的,亦即透過擴大、強化介入權之方式,將「受政府補助之專利藥」強制再授權專利,以降低藥品價格。 FTC於意見書中亦對此爭議提出看法,認為美國人民就處方藥須支付不斷上漲之昂貴價格,雖然賦予各機關審查「價格合理性」,將使得介入權發動更為廣泛且靈活,並得以監督藥品價格。惟擴大、強化介入權仍有隱患,尤其製藥公司恐為了保護其藥品專利,因此擴大申請專利權範圍導致專利叢林(patent thicket)現象產生,例如除將活性成分申請專利外,另將製程、劑型亦申請專利,此為未來各政府機關應該共同解決之問題。

從日本農業數據協作平台WAGRI擴建為智慧食物鏈歷程談因應疫情之智慧化措施

從日本農業數據協作平台WAGRI擴建為智慧食物鏈歷程談因應疫情之智慧化措施 資訊工業策進會科技法律研究所 劉宥妤 副法律研究員 2020年10月8日 壹、前言   我國近年積極發展智慧農業,一般農企業或農民發展智慧化過程中,面臨高額的設備建置、維護成本使其卻步,因此創設新的農業數據流通運用商業模式將能降低智慧化門檻,成為智慧農業普及落地之關鍵。本文將研析與我國農情相近之日本推動智慧農業數據流通運用之策略,作為我國智慧農業發展之借鏡。   日本與我國同樣面臨從事農業者高齡少子化以致後繼無人,日本政府於2016年提出Society 5.0概念,期待以資通訊(Information and Communication Technology,ICT)技術帶動發展社會各個領域[1],於農業領域利用農業ICT可使資深農民內隱知識成為外顯化數據而利於經驗傳承。   日本當時民間企業已有開發眾多ICT系統服務技術,不同業者因未進行合作,其提供的系統服務互不相容,ICT系統服務產出之數據格式、標準不一;另一方面,公部門(研究、行政機關)內的資料亦各自分散管理。為促進農業數據整合管理、流通運用,日本農業數據協作平台(WAGRI[2])因而催生。 貳、日本農業數據協作平台WAGRI發展歷程 一、日本首相指示建構數據平台   日本政府於2017年3月24日召開第6回「未來投資會議[3]」,作為主席之首相安倍晉三提到:為了能栽培出安心可口的作物,官方、民間應互相拿出作物生長狀況、氣候、地圖等更新資料,並且於2017年年中建構無論任何人均可簡易利用的資訊協作平台,必要數據須完全公開,交由IT綜合戰略本部[4]將前述平台規劃具體化。   於2017年6月9日召開的第10次未來投資會議中,公布「未來投資戰略2017[5]」,以實現「Society 5.0」為目標,其中提到於農、林、水產業領域,奠基於公部門保有之農業、地圖、氣象等公開化資訊,能夠共有活用各種數據的「日本農業數據協作平台(下稱WAGRI)」將於2017年開始建構。 二、WAGRI試營運   WAGRI由內閣府「策略性創新創造計畫(Strategic Innovation Promotion Program,SIP)」第1期計畫11個課題之一「次世代農林水產業創造技術」[6]支持(管理法人為農研機構[NARO][7]),由慶應義塾大學SFC研究所[8]建置,與參與SIP研究計畫聯盟,包括農業生產法人、農機製造商、ICT供應商、大學與研究機關等(例如日本IT企業NTT [Nippon Telegraph and Telephone Corporation]、富士通[Fujitsu Limited];農機大廠久保田[Kubota Corporation]、洋馬[Yanmar Holdings Co., Ltd.][9])共23個組織一同建置,具備「合作」(打破不同系統隔閡使數據得以相容互換)、「共有」(數據由提供者選定分享方式得以促成數據交換利用商業模式建立)、「提供」(由公私部門提供土壤、氣象等數據得以促成數據取得和後續流通)三大功能之WAGRI,試營使用時已有實作案例指出,活用WAGRI後在數據蒐集與利用上的勞力與時間成本明顯縮減[10]。 三、WAGRI自主營運   2019年4月以農研機構(NARO)為營運主體,正式營運開始原本由SIP計畫支援,轉由農研機構(NARO)正式營運。   今(2020)年4月更新WAGRI平台利用資訊自主營運後,原先不收費方式已變更,欲利用WAGRI之機關依據以下兩種利用平台方式,須繳納不同的費用[11]: 1. 數據利用者(利用WAGRI數據者)、數據利用暨提供者(利用WAGRI數據且提供數據予WAGRI者) 平台利用月費5萬日圓 若利用有償數據時,須另外支付數據使用費 2. 數據提供者(提供數據予WAGRI者) 平台利用月費3萬日圓 但書:若僅提供之數據屬於無償者,原則上不需要繳納平台利用費 參、因應疫情WAGRI擴散之應用   日本SIP第2期計畫12個課題之一「智慧生物產業與農業基礎技術[12]」所支持的「智慧食物鏈聯盟[13]」,將擴張SIP第1期計畫所建置之WAGRI,建構智慧食物鏈平台(簡稱WAGRI-dev),智慧食物鏈聯盟主要任務為建構智慧食物鏈(預計於2025年開始商業化服務),促使食物的加工、流通、銷售、出口相關數據可相互運用,以作為日本生鮮物流之基礎,將架構於WAGRI之基礎擴建為WAGRI-dev。   為因應疫情,今(2020)年4月7日聯合國糧農組織(Food and Agriculture Organization of the United Nations,FAO)和世界衛生組織(World Health Organization,WHO)聯合發佈「針對食品安全監管部門防控新型冠狀病毒肺炎(COVID-19)與食品安全的臨時指南[14]」,由日本SIP計畫課題「智慧生物產業與農業基礎技術」之智慧食物鏈聯盟,基於前述指南制定「新冠肺炎(COVID-19)對應指針」;同樣作為前述課題一環的「日本食品指針協作系統(簡稱WAGRI.info)」[15]為因應疫情而產出相對應的應用。   WAGRI.info,於7月13日開放網站受理食品、農產品相關業者進行食安登錄,不限於符合新冠肺炎對應指針,符合既有之品質・安全管理指針(例如:危害分析重要管制點[Hazard Analysis and Critical Control Points,HACCP])等即可申請登錄,並具備企業檢索功能供一般大眾使用。   WAGRI.info為WAGRI-dev之一環,未來將陸續添加多樣數據協作機能、防止數據竄改與不法入侵等措施。日本政府從原本期待藉由擴張WAGRI打造出從生產,以至加工、流通、銷售、出口等,建構一世界首度智慧食物鏈之外,因應疫情增加相關機能以建構食安資訊網。   我國亦有智慧農業數據相關平台提供OPEN DATA介接功能[16]、開發食安溯源整合應用系統,提供校園午餐食材流向資料,日本WAGRI整合與共享數據的模式可作為我國發展智慧農業活用數據之借鏡外,WAGRI.info之作法亦可供國內因應疫情之食安政策參考。 [1]〈科学技術基本計画〉,內閣府網站,https://www8.cao.go.jp/cstp/kihonkeikaku/index5.html(最後瀏覽日:2020/10/08)。 [2]WAGRI代表的是作為一數據平台 ,由各式的數據與服務連環成一個輪,調和各個社群、促進「和」諧,期待引領農業領域之創新,由WA+AGRI組合而成(WA是和的日文+農業AGRI),WAGRI網站,https://wagri.net/ja-jp/(最後瀏覽日:2020/10/08)。 [3]作為日本政府實施經濟政策與實現成長戰略之指揮總部所設置的日本經濟再生本部,從2016年起約每月召開「未來投資會議」,討論成長戰略與加速社會結構改革以擴大對未來之投資。〈日本経済再生本部〉,首相官邸網站,http://www.kantei.go.jp/jp/singi/keizaisaisei/(最後瀏覽日:2020/10/08)。 [4]日本政府積極展開推動活用IT科技做為解決各領域社會議題之手段,從2000年日本施行IT基本法(高度情報通信ネットワーク社会形成基本法),於隔年依法設立IT戰略本部(高度情報通信網路社会推進戦略本部),2013年依據政府CIO(Government Chief Information Officer)法於内閣官房設立「內閣資訊技術政策局局長(内閣情報通信政策監,簡稱政府CIO)」,IT戰略本部與政府CIO統整為IT綜合戰略本部(高度情報通信ネットワーク社会推進戦略本部,IT総合戦略本部),以迅速推動促成高度資通網路社會的重點政策,打破省廳的縱向斷層,整個政府橫向串聯。〈高度情報通信ネットワーク社会推進戦略本部(IT総合戦略本部)〉,首相官邸網站,https://www.kantei.go.jp/jp/singi/it2/,(最後瀏覽日:2020/10/08)。 [5]許祐寧,〈日本首相官邸舉行第10次未來投資會議,提出日本「未來投資戰略2017」以實現「Society 5.0」為目標〉,資策會科法所網站,2017/08,https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&i=72&d=7844(最後瀏覽日:2020/10/08)。 [6]內閣府聚焦「Society 5.0」重要課題,結合未來投資會議施政重點領域,編列年度科技預算,創設並推動「策略性創新創造計畫(戦略的イノベーション創造プログラム,Strategic Innovation Promotion Program,SIP),SIP第1期計畫為2014年度到2018年度共5年期的計畫。〈戦略的イノベーション創造プログラム(SIP:エスアイピー)〉,內閣府網站,https://www8.cao.go.jp/cstp/gaiyo/sip/index.html(最後瀏覽日:2020/10/08);邱錦田(2017),<日本實現超智慧社會(社會5.0)之科技創新策略>,國家實驗研究院網站,https://portal.stpi.narl.org.tw/index/article/10358(最後瀏覽日:2020/10/08)。 [7]農研機構,日本國立研究開發法人農業・食品產業技術綜合研究機構The National Agriculture and Food Research Organization,簡稱NARO。 [8]位於慶應義塾大學湘南藤澤校區的政策・媒體研究科、綜合政策學系、環境情報學系的附屬研究所,簡稱SFC研究所,為推動日本智農發展之重要學研單位,任職於該所教授神成淳司為WAGRI研究負責人,同時身為內閣官房副政府CIO、IT綜合戰略室長代理,促成「農業情報創成·流通促進戰略」產出,亦身兼WAGRI協議會會長、NARO 農業共通資訊總監之角色,促成WAGRI與日本智慧農業實證計畫串接,其為日本政府推動農業數據流通之重要角色,促進日本智農發展不餘餘力。SFC研究所網站,https://www.kri.sfc.keio.ac.jp/(最後瀏覽日:2020/10/08)。 [9]IoTNEWS,〈マイクロソフト、産官学連携で構築する「農業データ連携基盤」でMicrosoft Azureを活用したデジタル農業を実現〉,2017/05/15,https://iotnews.jp/archives/56366(最後瀏覽日:2020/10/08)。 [10]神成淳司,〈ICTが社会を変える : 農業データ連携基盤の展開と未来図〉,《技術と普及 : 全国農業改良普及職員協議会機関誌》, 12月號,頁24-26(2017);農林水産省技術政策室,〈農業データ連携基盤の構築について〉,2018/09,http://www.affrc.maff.go.jp/docs/smart_agri_pro/attach/pdf/smart_agri_pro-15.pdf (最後瀏覽日:2020/10/08)。 [11]〈農業データ連携基盤(WAGRI)の2019年度以降の利用について〉,2019/4/2,農研機構網站,https://www.naro.affrc.go.jp/project/research_activities/laboratory/rcait/130311.html(最後瀏覽日:2020/10/08);〈農業データ連携基盤(WAGRI)利用申請〉,農研機構網站https://www.naro.affrc.go.jp/laboratory/rcait/wagri(最後瀏覽日:2020/10/08)。 [12]同註6,SIP第2期計畫為2017年度末到2022年度共約5年期的計畫。 [13]智慧食物鏈之建構為該課題的主要研究之一,智慧食物鏈聯盟成員包括:由内閣官房、内閣府、農林水產省等政府組織作為觀察員,由地方自治體、學術研究機關、農業生產法人、批發市場、中盤商、物流業、零售業、製造商、ICT供應商等超過70個組織參與(聯盟代表為慶應義塾大學SFC研究所),參註13;〈「SIP第2期 「スマートバイオ産業・農業基盤技術」シンポジウム2020 -新たなスマートフードチェーンの構築をめざして-」〉,2020/03/10,WAGRI網站,https://wagri.net/ja-jp/News/generalnews/2020/20200310(最後瀏覽日:2020/10/08)。 [14]See FOOD AND AGRICULTURE ORGANIZASTION OF THE UNITED NATIONS [FAO], COVID-19 and Food Safety: Guidance for Food Businesses: Interim guidance (Apr. 7, 2020), http://www.fao.org/family-farming/detail/en/c/1275311/(last visited Oct. 8, 2020).〈聯合國糧農組織和世界衛生組織聯合發佈針對食品安全監管部門防控新冠肺炎(COVID-19)與食品安全臨時指南〉,中國大陸檢驗檢疫科學研究院網站,http://www.caiq.org.cn/kydt/902625.shtml(最後瀏覽日:2020/10/08)。 [15]WAGRI.info 事務局,〈「WAGRI.info(食品ガイドライン連携システム)」のWEBサイト開設、事業者登録受け付け開始〉,2020/07/13,https://kyodonewsprwire.jp/release/202007131927(最後瀏覽日:2020/10/08);日本食品指針協作系統WAGRI.info網站,https://www.wagri.info/(最後瀏覽日:2020/10/08)。 [16]智慧農業共通資訊平台網站,https://agriinfo.tari.gov.tw/(最後瀏覽日:2020/10/08);〈智慧農業4.0共通資訊平台建置(第二期)成果發表會〉,2019/12/12,智慧農業網站,https://www.intelligentagri.com.tw/xmdoc/cont?xsmsid=0J141518566276623429&sid=0J338358950611186512(最後瀏覽日:2020/10/08)。

精簡專利審查:加拿大專利法修正案即將生效

  因應加拿大-美國-墨西哥協定(Canada-United States-Mexico Agreement, CUSMA)中關於專利期間調整及精簡專利審查程序,加拿大政府對加拿大專利法進行重大修改,新法於2022年10月3日生效,其主要修正重點如下: 1.初步審查報告後之繼續審查要求 如專利申請人欲於3份審查意見報告做成後申請繼續審查(Request for Continues Examination),需支付816加幣之費用(小型企業之費用為408加幣)並可額外獲得最多2份審查意見,如專利仍未核准,申請人需另外再申請繼續審查。 2.超過20項專利請求項之超額費用 專利範圍中多於20項之專利請求項,每多1項專利請求項將被要求額外支付100加幣之超額費用(但小型企業僅需支付40加幣之超額費用),該費用將於以下2個情形產生: (1)當提出審查時,申請案中有超過20項之專利請求項; (2)當支付授予專利的最終費用時,專利請求項在審查過程中超過20項。 3.附條件之專利核准通知 一旦專利申請已接近核准階段,僅剩下次要的手續問題時,加拿大專利局可核發附條件之核准,使申請人修正該問題並支付最終費用以獲取專利。   加拿大政府於2021年7月出版的法規影響聲明(Regulatory Impact Analysis Statement)闡述該法修正理由,並對加拿大專利局無法於合理時間內完成專利審查表示擔憂,於2020年至2021年,加拿大專利審查至授予專利平均時間為31個月,且於本修正案前,對於專利局在授予專利或放棄專利前之審查報告數量未有限制,且無論花費的資源多寡,所有專利之審查費均相同。   該法規影響聲明亦提到加拿大專利申請案包含平均多於其他國家的專利請求項,導致專利審查效率低下,並解釋政府不鼓勵專利申請案包含不必要、過多的專利請求項,確保更快地給予專利,並預計本修正案施行後將減少專利申請量並提高專利品質。   另有論者指出,此修正案可能導致專利申請成本提高,使申請人於加拿大申請專利之意願降低,並認為加拿大專利制度尚待解決的問題在於雙重專利制度(double patenting regime)及專利適格性(subject matter eligibility),本法施行後的實務發展值得持續關注。   「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP