WIPO發布《世界智慧財產權指標》,2021年全球智慧財產權申請數量仍持續增加

  世界智慧財產權組織(WIPO)於2022年11月21日發布了《2022年世界智慧財產權指標(World Intellectual Property Indicator, WIPI)》。WIPO以全球150個國家智慧財產主管機關的統計資料、產業的市場調查資料作為分析標的,針對全球專利權(含新型專利)、商標權、工業設計、植物品種權、地理標示、創意經濟(出版業)的整體發展狀況進行調查。

  根據2022年的分析結果顯示,與過往經濟衰退期間的歷史經驗不同,在COVID-19疫情期間,2021年全球智慧財產權的申請數量持續增加。如:
  1、「專利」的申請量增加了3.6%。
  2、「商標」的申請量(含指定類別)增加了5.5%。
  3、「工業設計」的申請量增加了9.2%。
  4、「植物品種」的申請量增加了12%。

  以商標為例,2021年全球共提交了約1390萬件商標申請,申請量從金融海嘯後(2009年)至今連續12年成長。其中,亞洲商標主管機關受理的商標申請量占全球的69.7%,較2011年時的44.7%有顯著成長;受理商標申請的前五名國家分別為:
  1、中國國家知識產權局(CNIPA):約950萬件。
  2、美國專利商標局(USPTO):約90萬件。
  3、歐盟智慧財產局(EUIPO):約50萬件。
  4、印度專利、設計及商標管理局(CGPDTM):約49萬件。
  5、英國智慧財產局(UK IPO):約45萬件。

  此外,指標針對「非母國申請案(Non-resident trademark applications)」的產業別進行分析,分析結果顯示2021年各國商標申請人至外國市場尋求商標保護的前十大產業分別為:
  1、研究與技術:20%
  2、健康醫事:13.8%
  3、服裝配件:12.8%
  4、休閒教育:10.5%
  5、居家設備:9.7%
  6、農業產品與服務:9.6%
  7、商業金融:9.5%
  8、運輸機械:6%
  9、營建:5.2%
  10、化學:2.8%

  再者,指標中分析上述產業在各國商標申請案件中的占比,可作為我國企業全球布局的參考:
  1、研究和技術產業:歐盟21.3%、英國20.4%、日本18.7%、美國17.7%。
  2、農業產品與服務產業:中國25.2%、韓國18.4%、俄羅斯14.2%、印度15.1%、土耳其14.8%。
  3、健康醫事產業:印度23.1%、日本13.9%、中國11.3%;
  4、商業金融產業:巴西26.3%、土耳其23.3%。

  WIPO從2009年至今每年發布《世界智慧財產權指標》給各國政府參考,期待各國政府持續建構更完善的智慧財產制度,協助個人、企業保護其創新,以促進全球經濟的發展。

  本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
※ WIPO發布《世界智慧財產權指標》,2021年全球智慧財產權申請數量仍持續增加, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8916&no=57&tp=1 (最後瀏覽日:2026/01/31)
引註此篇文章
你可能還會想看
落實完善數位資料管理機制,有助於降低AI歧視及資料外洩風險

落實完善數位資料管理機制, 有助於降低AI歧視及資料外洩風險 資訊工業策進會科技法律研究所 2023年07月07日 近年來,科技快速發展,AI(人工智慧)等技術日新月異,在公私部門的應用日益廣泛,而且根據美國資訊科技研究與顧問公司Gartner在2023年5月發布的調查指出,隨著由OpenAI開發的ChatGPT取得成功,更促使各領域對於AI應用的高度重視與投入[1],與此同時,AI歧視及資料外洩等問題,亦成為社會各界的重大關切議題。 壹、事件摘要 目前AI科技發展已牽動全球經濟發展,根據麥肯錫公司近期發布的《生成式人工智慧的經濟潛力:下一個生產力前沿(The next productivity frontier)》研究報告指出,預測生成式AI(Generative AI)有望每年為全球經濟增加2.6兆至4.4兆的經濟價值[2]。同時在美國資訊科技研究與顧問公司Gartner對於超過2500名高階主管的調查中,45%受訪者認為ChatGPT問世,增加其對於AI的投資。而且68%受訪者認為AI的好處大於風險,僅有5%受訪者認為風險大於好處[3]。然而有社會輿論認為AI的判斷依賴訓練資料,將可能複製人類偏見,造成AI歧視問題,而且若程式碼有漏洞或帳戶被盜用時,亦會造成資料外洩問題。 貳、重點說明 首先,關於AI歧視問題,以金融領域為例,近期歐盟委員會副主席Margrethe Vestager強調若AI用於可能影響他人生計的關鍵決策時,如決定是否能取得貸款,應確保申請人不受性別或膚色等歧視[4],同時亦有論者認為若用於訓練AI的歷史資料,本身存有偏見問題,則可能導致系統自動拒絕向邊緣化族群貸款,在無形之中加劇,甚至永久化對於特定種族或性別的歧視[5]。 其次,關於資料外洩問題,資安公司Group-IB指出因目前在預設情況下,ChatGPT將保存使用者查詢及AI回應的訊息紀錄,若帳戶被盜,則可能洩露機敏資訊。據統計在2022年6月至2023年5月間,在亞太地區有近41000個帳戶被盜,而在中東和非洲地區有近25000個帳戶被盜,甚至在歐洲地區也有近17000個帳戶被盜[6]。另外在2023年3月時,ChatGPT除了發生部分用戶能夠檢視他人聊天紀錄標題的問題外,甚至發生個人資料外洩問題,即用戶可能知悉他人的姓名、電子郵件,付款地址,信用卡到期日及號碼末四碼等資料[7]。 參、事件評析 對於AI歧視及資料外洩等問題,應透過落實完善數位資料治理與管理機制,以降低問題發生的風險。首先,在收集訓練資料時,為篩選適合作為模型或演算法基礎的資料,應建立資料評估或審查機制,減少或避免使用有潛在歧視問題的資料,以確保分析結果之精確性。 其次,不論對於訓練資料、分析所得資料或用戶個人資料等,均應落實嚴謹的資料保密措施,避免資料外洩,如必須對於資料進行標示或分類,並依照不同標示或分類,評估及採取適當程度的保密措施。同時應對於資料進行格式轉換,以無法直接開啟的檔案格式進行留存,縱使未來可能不慎發生資料外洩,任意第三人仍難以直接開啟或解析資料內容。甚至在傳送帳戶登入訊息時,亦應採取適當加密傳送機制,避免遭他人竊取,盜取帳戶或個人資料。 財團法人資訊工業策進會科技法律研究所長期致力於促進國家科技法制環境完善,於2021年7月發布「重要數位資料治理暨管理制度規範(Essential Data Governance and Management System,簡稱EDGS)」,完整涵蓋數位資料的生成、保護與維護,以及存證資訊的取得、維護與驗證的流程化管理機制,故對於不同公私部門的AI相關資料,均可參考EDGS,建立系統性數位資料管理機制或強化既有機制。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Gartner, Gartner Poll Finds 45% of Executives Say ChatGPT Has Prompted an Increase in AI Investment (May 3, 2023), https://www.gartner.com/en/newsroom/press-releases/2023-05-03-gartner-poll-finds-45-percent-of-executives-say-chatgpt-has-prompted-an-increase-in-ai-investment (last visited June 30, 2023). [2]McKinsey, The economic potential of generative AI: The next productivity frontier (June 14, 2023), https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-AI-the-next-productivity-frontier#introduction (last visited June 30, 2023). [3]Gartner, supra note 1. [4]Zoe Kleinman, Philippa Wain & Ashleigh Swan, Using AI for loans and mortgages is big risk, warns EU boss (June 14, 2023), https://www.bbc.com/news/technology-65881389 (last visited June 30, 2023). [5]Ryan Browne & MacKenzie Sigalos, A.I. has a discrimination problem. In banking, the consequences can be severe (June 23, 2023), https://www.cnbc.com/2023/06/23/ai-has-a-discrimination-problem-in-banking-that-can-be-devastating.html (last visited June 30, 2023). [6]Group-IB, Group-IB Discovers 100K+ Compromised ChatGPT Accounts on Dark Web Marketplaces; Asia-Pacific region tops the list (June 20, 2023), https://www.group-ib.com/media-center/press-releases/stealers-chatgpt-credentials/ (last visited June 30, 2023). [7]OpenAI, March 20 ChatGPT outage: Here’s what happened (Mar. 24, 2023),https://openai.com/blog/march-20-chatgpt-outage (last visited June 30, 2023).

全球首宗 GCP 中藥上市

  全球首宗通過西方臨床試驗的中藥新藥將在台上市,結合台灣、新加坡與大陸三地資金與技術發展出來的紅麴萃取藥物「壽美降脂一號」,本月十七日正式獲得國內衛生署中醫藥委員會許可通過,成為全球第一項符合西醫「優良臨床規範( GCP )」,獲准進入市場的複方植物用藥。   由於中藥複方治療的特性和西藥單一成分的結構有很大的不同,縱使美國過去曾投入相當多資源進行中草藥研發,但是至今並未有任何一項藥物完成三期臨床試驗,因此「壽美降脂一號」能通過衛生署的新藥審核,不僅對中藥界而言是一項破冰之舉,對我國新藥臨床也算是一大突破。「壽美降脂一號」是由新加坡華僑銀行子公司維用科技出資,由北京大學研發團隊從兩百多種紅麴中,篩選出特殊菌株後,授權台灣公司進行膠囊的開發。為了這項中藥新藥的核准許可,開發公司彥臣生技總計投入三年半時間,在中國醫藥大學附設醫院院長林正介主持下,完成第三期臨床試驗。中醫藥委員會及醫藥品查驗中心( CDE )為了慎重起見,又花了一年半時間審查,今年終獲得中醫藥委員會通過許可。   國內目前用來治療心血管疾病的降血脂化學藥物共有六種,一年市場規模三十五億元,其中最普遍的史塔汀( Statin )被發現有少數過敏副作用,紅麴萃取而成的「壽美降脂一號」,其目的就是為了突破化學藥物所產生的副作用。彥臣生技目前僅掌握「壽美降脂一號」的台灣銷售權,短期內可進一步獲得日、韓兩地市場銷售權,母公司維用科技已計劃利用台灣臨床試驗成果,進一步向美國 FDA 叩關。為了執行 GCP ,彥臣生技已自行開發一套中藥標準化的平台技術,該公司將和維用科技洽談技術授權,爭取進入美國市場機會。

防疫也須防弊!美國加州檢察總長針對醫療照護機構遭受勒索軟體攻擊提出適當措施與事故通報指引

  由於近日頻傳醫院遭受勒索軟體攻擊(ransomware attacks),美國加州檢察總長於2021年8月24日發布官方公告(bulletin):在加州州法「醫療資訊保密法」(Confidentiality of Medical Information Act, CMIA)與聯邦法「健康保險可攜與責任法」(Health Insurance Portability and Accountability Act of 1996, HIPAA)規範下,蒐集、處理和利用醫療健康資料的醫療照護機構,有採取適當措施與事故通報的義務,以維護醫療健康資料保密性。   針對「採取適當措施」的內容,美國加州檢察總長於本次官方公告中,提出明確指引(guidance):醫療照護機構須至少採取下列5項防範措施(preventive measures),以避免勒索軟體威脅: 確保所有存取醫療健康資料的作業系統與軟體,均升級至最新版本; 安裝防毒軟體,並維護其運作; 定期為員工舉辦教育訓練,包含教導員工不要點擊可疑網址和防範釣魚電子郵件(phishing email); 限制員工下載、安裝和運作未經批准的軟體; 維護和定期測試資料備份與救援計畫,以便於事故發生時,控制對資料和系統的影響範圍及程度。   此外,針對「資料外洩事故通報義務」(breach notification obligations),美國加州檢察總長指出:依據「加州民法」(California Civil Code)第1798.82條,擁有或經授權使用含有個人資料的「電腦化資料」(computerized data)的醫療照護機構,於發生,或可合理確信發生,影響超過500位加州居民的資料外洩事故時,即負有將該事故通報檢察總長辦公室的義務。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

TOP