英國商業、能源及產業策略部(Department for Business, Energy and Industrial Strategy, BEIS)於2022年11月16日發布行政命令,以國家安全為由要求登記於荷蘭的中資公司Nexperia BV出售其於2021年7月收購之Nexperia Newport Limited(NNL)(原Newport Wafer Fab)至少86%的股份。
NNL擁有英國最大的晶圓製造工廠,其每月生產約32,000片晶圓,並大多出口至亞洲用以生產半導體。今(2022)年5月英國政府發現中國政府擁有Nexperia BV的母公司聞泰科技大約30%之股份後,即依《2021年國家安全與投資法》(National Security and Investment Act)第26條調查Nexperia BV於2021年7月收購NNL之行為,並認為該行為恐使NNL的半導體生產技術與知識(technological expertise and know-how)外流至中國,進而損害英國利益。同時,該行政命令亦提及NNL工廠位置靠近英國重要之南威爾斯半導體產業聚落,若讓Nexperia BV繼續經營該工廠,將使Nexperia BV能輕易的接觸相關生產技術與知識,佐以Nexperia BV母公司與中國政府的關係,恐有危害英國國家安全之虞。
Nexperia BV表示將提出訴願以推翻該行政命令。惟英國下議院外交事務專責委員會(Foreign Affairs Select Committee)主席表示,英國不會將關鍵基礎設施轉移給一家與中國政府有明確往來的公司,以確保其戰略資產不會因短期利益而落入獨裁國家手中;並補充說明,此一決定亦代表英國政府將更重視國家安全,同時避免具有領先地位的科技公司與研究落入競爭對手。
本文為「經濟部產業技術司科技專案成果」
為了報復美國非法補貼國內棉花業者,造成巴西的損失,巴西先是在3月初公布一份含102項美國產品之關稅調高名單,將在4月7日生效;在3月中旬又提出另外一份含21個項目的名單,包括中止(suspend)美國化學、醫藥、軟體、書籍和電影方面的專利權和智慧財產權,這份新的名單在公布後的未來20天,任何人都可以提出意見。 巴西的制裁措施是依據去年8月世界貿易組織(WTO)針對巴西和美國的貿易糾紛所作出的決定,WTO認為美國在1999年到2002年違法補貼其國內棉花業者,違反作為WTO成員所應遵守的義務,而給予巴西對美國進行8.29億美元的跨業報復(cross-sector retaliation)權利。 巴西政府估計3月初的調高進口關稅總值可達5.91億美元,3月中旬的智慧財產權報復行動可產生2.39億美元的衝擊。此外,如果3月中旬的制裁措施最後真的付諸實行,將會是WTO糾紛中第一次成功地利用智慧財產權作為報復手段的案例。 巴西政府希望藉由最新的報復手段可以迫使美國正視這個問題,美國貿易代表團則認為巴西此舉會帶來負面的先例影響,並且希望能和巴西政府協商共同解決這項議題,盡可能不使報復行動發生。
司法院擬設置智慧財產專門法院,並就智慧財產案件訂定特別之審理制度鑑於以知識產能為基礎而形成之專利、商標及著作權等智慧財產權,已成為促進國家產業升級及經濟發展之利器,而智慧財產權因無實體存在,故其權利之獲取及維護,端賴健全之智慧財產法制,故完善之智慧財產權爭訟程序,居於關鍵之地位。 智慧財產案件之審理,與一般訴訟相較,有其特殊性,例如其審理必須仰賴科技專業之協助,並經常涉及營業秘密之保護;又因智慧財產有關產品之市場更替週期短暫,因此其迅速審理之要求,具有等同於裁判正確之重要性。而針對智慧財產案件之特性,先進國家多設置專責審理智慧財產案件之專業法院,並就智慧財產訴訟,設有特殊之程序規定,以資因應。 反觀我國之專利法、商標法等智慧財產相關法律,就權利之取得及受侵害有關之訴訟,固亦設有若干特別規定,惟實際上仍有不足,未能充分符合智慧財產案件審理之需求,以致各界認為我國之智慧財產訴訟,仍然存有諸如證據蒐集手段欠缺,舉證困難,以及法官未具備法律以外之專業知識,並過度依賴鑑定結果,以致拖延訴訟,且裁判專業性不足等等缺點,未能符合社會之期待,甚至造成產業發展之障礙。 為改善我國智慧財產訴訟程序,發揮權利有效救濟之機能,司法院擬具「智慧財產法院組織法」及「智慧財產案件審理法」兩草案,期能藉由完善之智慧財產救濟制度,妥善保障智慧財產權人之權益,從而增進我國知識經濟之競爭力。 現今在智財案件處理實務上,權利人最常以提供擔保方式,聲請定暫時狀態處分,以禁止侵權者繼續製造、販賣及銷售商品。由於此舉可立刻讓侵權者沒辦法做生意,甚至逼迫下游供應商選邊站,殺傷力往往比訴訟的審理結果還大。考量智慧產案件之特性, 「智慧財產案件審理法」草案,將智慧財產權保全程序聲請門檻提高,要求聲請人應「釋明」理由,不能僅提供巨額擔保金,否則法官將不准其保全聲請。這項規定勢將促使企業更為審慎地提出「定暫時狀態」處分的聲請, 高科技企業未來將不能動輒利用假扣押等保全程序進行「騷擾」性商業戰術。 行政院院會於 4 月 19 日 已通過前二草案,但政院以附註意見方式,指智財法院應結合民、刑、行政「三合一」審理制度,對涉及行政處分「得」自為判斷,不能「應」自為判斷,期能快速解決訟爭,突破現行智財案件審理瓶頸。
何謂專利適格(Patent Eligibility)的兩階段標準(Two-Step Test)?「專利適格」(Patent Subject Matter Eligibility)用淺白的文字解釋,就是成取得專利的基礎門檻、資格。專利適格的司法排除事項(Judicial Exception)為:「自然法則、自然現象、抽象概念」。而「兩階段標準」的導入,是給司法排除事項「敗部復活」的機會。 可取得專利適格的標的於35 U.S.C. §101有明文:「任何人發明或發現新穎而有用之程序(Process)、機器(Machine)、製品(Manufacture)或物之組合(Composition of Matter),或其新穎而有用之改良,皆得依據本法所定規定及要件就其取得專利權利。」但符合§101的敘述,不必然具專利適格。最高法院表示:「自然法則、自然現象、抽象概念是科學與科技成品的基礎,不可被獨佔。」然而,隨愈來愈多的發明與發現推出、電腦文明的發展,司法排除事項亦受挑戰,在 Mayo v. Prometheus,最高法院首次針對自然法則和自然現象提出「兩階段標準」。基此,美國專利與商標局(USPTO)2012年發表專利審查綱要。後續,Alice v. CLS Bank中,引「兩階段標準」將兩階段標準應用在「電腦應用過程、電腦系統、減免交割風險的電腦可讀媒介」的抽象概念。USPTO也將「兩階段標準」編入專利審查手冊(Manual of Patent Examining Procedure)。 USPTO專利審查手冊公布的「兩階段標準」: 第1步:四種可取得專利適格的標的(35 U.S.C. §101) 程序、機器、製品、物之組合。 第2A步:司法排除事項 假設不是「自然法則、自然現象、抽象概念」三種司法排除事項,則具專利適格;若是司法排除事項,則進入第2B步。 第2B步:是否「更具意義」(Significantly More)? 這一個步驟是「敗部復活」。如果該發明存在「發明概念」(Inventive Concept),則符合「更具意義」,可取得專利適格;反之,則無專利適格。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。