OECD於2022年12月6日公布一份標題為「為中小企業永續發展提供資金—推動力、阻力和政策」(Financing SMEs for sustainability — Drivers, Constraints and Policies)的報告,報告中檢視現行支援中小企業參與永續金融的工具與政策,並指出政府在制定公共政策與支援措施時應考慮的要點,期能加速中小企業的綠色轉型。
報告中首先分析中小企業綠色轉型的阻力與推動力。在阻力方面,中小企業由於規模小,不易取得銀行的融資,也無多餘人力關注綠色議題與相關可用資源的發展,因此不敢貿然從事具有高度不確定性的綠色投資,綠色轉型意識普遍低落。更由於中小企業永續金融生態系的參與者廣泛,包括國際及國家法規和準則的制定者、政策制定者、永續資金提供者、ESG的中介機構等,這些永續機構、工具及實踐行動會隨著永續金融發展持續增加,令中小企業無所適從。在推動力方面,包含消費者的永續意識提升、越來越多金融機構與投資者將永續績效納入投資決策考量,以及氣候變遷與淨零轉型帶來的商機,皆使得中小企業有必要加強綠色轉型的努力,才能從淨零商機中獲利,免於陷入競爭劣勢。
為了提高中小企業綠色轉型的動機,OECD建議可透過財務性及非財務的支援,雙管齊下。目前財務性的支援以融資工具為主流,其它還有綠色基金、補助金、津貼、補貼、減稅、降低費用、股權或混合式的支援工具等。非財務性的支援則有與永續相關的技術支援、意見提供、諮詢服務和教育培訓等。這些主要是透過政府、金融機構、或是國際倡議進行,也有政府及民間機構獨自或合作建立的線上平台,提供一站式的服務,使得資源的取得更加便捷有效率。
中小企業永續金融仍存在許多問題需要進一步了解與因應,包括中小企業的淨零轉型意識與知識間的落差、永續金融資訊的不足、環境績效評量與報告能力的欠缺,以及該如何強化中小企業永續金融生態系,以增加永續金融的供需量等。OECD未來會繼續深入探究這些議題,支援落實「2022年G20/OECD更新中小企業融資高級別原則」(the 2022 Updated G20/OECD High Level Principles on SME Financing)中新增的「加強永續金融」原則,這顯示推動中小企業永續金融已是國際共識,我國政府與業者也應及早擬訂對策因應之。
德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
美國FDA於20250617宣布將試行「局長國家優先審查券」COVID-19疫情後美國開始積極處理藥品供應鏈脆弱性,為提振本土製造與審查效率,美國食品及藥物管理局(Food and Drug Administration, FDA)於2025年6月17日宣布將試辦「局長國家優先審查券」(Commissioner’s National Priority Voucher, CNPV)。該計畫依據《聯邦食品、藥品與化妝品法》(The Federal Food, Drug, and Cosmetic Act, FFDCA)與《公共衛生服務法案》(Public Health Service Act, PHSA)授權。CNPV將不同審查分組集中處理,並結合資料預先提交機制,力求將一般10-12個月的審查流程壓縮至1-2個月,試辦期為一年,並與現行優先審查及優先審查券(Priority Voucher, PRV)機制獨立並行。 內容要點: 1.遴選資格:符合任一「國家優先」標準之廠商 因應公衛危機:如廣效疫苗開發 帶來潛在的創新療法:超越突破性療法認定成效的新型療法 解決未滿足公共衛生需求:如罕病或缺乏療效標準治療之疾病 提升美國供應鏈韌性:如將藥品研發、臨床、生產遷至美國 提高可負擔性:將美國藥價降至最惠國藥價,或減少下游醫療費用 2.使用與要求: 適用階段:可於申請臨床試驗或申請藥證等階段啟用,亦可先領「未指名券」保留資格。 文件要求:需提前60天提交完整藥品化學製造與管制(Chemistry, Manufacturing, and Controls, CMC)與仿單預審,如遇重大缺件FDA得延長審查期限。 有效性:2年內使用,逾期失效;不可轉讓,但併購案中可沿用。 CNPV透過團隊同日決策,有望在FDA人力縮減背景下縮短審查時程。並強調國家利益,可能優先惠及具戰略價值及在美投資的大型藥廠;對我國優化藥品審查流程與吸引製造投資等目標,亦具重要參考價值。
美國聯邦貿易委員會與臉書就隱私議題達成和解臉書(Facebook)於今年11月底與美國聯邦貿易委員會(FTC)就2009年的隱私權控訴案達成和解。該控訴案指出「臉書欺騙消費者其在臉書上的資訊可以保持隱私,然而卻一再任這些資訊被公開分享與使用」。舉例而言,在2009年12月,臉書改版時未預先通知使用者進行設定,導致使用者的朋友名單被公開。除此之外,擁有全球8億用戶的臉書,允許廣告商在臉書使用者點選廣告時,蒐集其個人身分資訊。另外,縱使臉書的使用者將帳戶刪除,其照片等等影音資料仍能夠被該公司讀取。臉書的這些行為被聯邦貿易委員會指出,這是不公正的詐欺行為(unfair and deceptive)。 聯邦貿易委員會最終與臉書達成和解,未施加任何罰緩,也未指控臉書蓄意地違反任何法規。依照和解內容,臉書必須要在接下來的二十年內,每兩年一次受獨立公正第三人稽核其隱私保護措施。但假設臉書在未來違反了這些和解條款,臉書將被處以每行為每日16,000美元的罰緩。推特(Twitter)以及谷歌(Google)近來也與聯邦貿易委員會達成了類似的協議。 聯邦貿易委員會要求臉書必須要取得使用者「確切的同意」才可以變更其本身的隱私使用設定。比如說,假設使用者設定某些內容只能供「朋友」讀取,臉書就不能夠把這些內容提供給「朋友」以外的人,除非取得使用者的同意。
美國第9巡迴上訴法院於2015年7月6日宣布Multi Time Machine v. Amazon案的見解美國第9巡迴上訴法院(9th Circuit)於2015年7月6日對外宣布Multi Time Machine v. Amazon案的見解,其推翻地方法院看法,認定被告Amazon公司提供的服務有侵害原告Multi Time Machine公司商標權之虞。 本案原告Multi Time Machine公司是一家製作手錶的廠商,在被告Amazon公司的網站上有提供零售服務。原告認為被告網站提供之服務,可使消費者搜索網站內的物品,但其所得之結果(含圖片)卻容易令人混淆,如搜尋原告的MTM手錶(為Multi Time Machine之商標),會將商標權人及其他廠商的商品都包含在內,導致消費者誤認為其他廠商手錶也是由MTM製造,進而購買非原告公司生產之手錶。原告因而向地方法院提出訴訟,認為被告Amazon公司侵害其商標權,違反聯邦法典內之Lanham Act的第1114條(1)(a)及第1125條(a)(1)規定。但洛杉磯地方法院認為被告行為並未侵害商標權,原告不服故提起上訴。 第9巡迴上訴法院採用1979年AMF v. Sleekcraft Boats案認定之方式,並於2011年Network Automation v. Advanced System Concepts案後發展出的測試標準,用以判斷有無侵害商標權。其標準包含:1.商標的強度、2.商品近似或相關連程度、3.與商標的相似性、4.實際混淆之證據、5.銷售管道、6.消費者在意程度、7.被告意圖、8.擴展之可能性。上訴法院認為,本案除了3、5、8三項較無關外,其餘5項因素經法院研究結果,原告商品在被告網站上販售時,1、2、7於原告影響較大,而4、6是被告提供服務(即供消費者購買)時須在意的。因此,綜合判斷之結果,被告行為已可能侵害原告之商標權,故推翻地方法院之判決結果,發回地方法院續行審理,本案後續判決進展及結果實值持續觀察。