法國CNIL重罰微軟因搜尋引擎Bing違法運用cookie

  法國國家資訊自由委員會(Commission Nationale de l'Informatique et des Libertés, CNIL)基於cookie聲明(cookie banner)違反法國資料保護法(Act N°78-17 of 6 January 1978 on Information Technology, Data Files and Individual Liberties)裁罰微軟愛爾蘭分公司(Microsoft Ireland Operations LTD,下稱微軟)搜尋引擎Bing,並根據cookie蒐集資料間接產生的廣告收入、資料主題數量及處理的資料範圍定出6千萬歐元之罰鍰額度,且要求微軟應於3個月內限期改正,如逾期按日處以6萬歐元罰鍰。本案是繼2022年1月6日以來,CNIL以相同理由分別對Google與Facebook裁罰1.5億及6千萬歐元罰鍰後,再增1件科技巨頭因違法運用cookie遭受裁罰之案例。本案對我國隱私執法機關參酌於數位環境中,應就cookie聲明如何進行管理之理由與細節,具有參考價值。

  而本案微軟之搜尋引擎Bing遭受裁罰之理由,主要可分為二面向:

  一、未經使用者事前同意,逕於使用者設備中設置cookie

  依法國資料保護法第82條規定,業者利用cookie或其他追蹤方式針對使用者終端設備上的資料進行讀取或寫入資料前,應盡告知義務並取得使用者同意。惟搜尋引擎Bing在使用者造訪網站時,未經使用者同意便設置一種具有安全及廣告等多種用途的cookie(MUID cookie)於其電腦設備,且當使用者繼續瀏覽網站時,將會另設置其他廣告cookie,然微軟亦未就此取得使用者同意。

  二、拒絕設置cookie與給予同意之方式便利性應相同

  在有效同意的標準與具體判斷上,由於搜尋引擎Bing的cookie聲明第一階層僅提供「接受」與「設定」兩類按鈕,並未提供「拒絕」按鈕,因此使用者同意或拒絕設置cookie之流程便利性有其差異,並未一致,如下說明:

  (一)使用者同意設置cookie

  如使用者同意設置cookie,僅需於cookie聲明的第一階層點擊「接受」按鈕,即完成設置。

  (二)使用者拒絕設置cookie

  若使用者欲拒絕設置cookie,需於cookie聲明的第一階層點擊「設定」按鈕;其後進入第二階層,使用者可於各類型cookie選擇開啟或關閉,再點擊「保存設定」按鈕,始完成設置。

  是以使用者拒絕同意設置cookie與給予同意之方式,兩者的便利性並未一致。又因第二階層顯示默認未設置cookie,恐導致使用者誤以為網站並未設置cookie,故CNIL認為此種同意欠缺自願性而屬無效者。

相關連結
你可能會想參加
※ 法國CNIL重罰微軟因搜尋引擎Bing違法運用cookie, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8941&no=16&tp=1 (最後瀏覽日:2025/05/23)
引註此篇文章
科法觀點
你可能還會想看
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

2013年全球智慧財產權申請量顯見成長,中國大陸佔居首要

  世界智慧財產權組織(WIPO)於2014年12月所公布的世界智慧財產權指標(World Intellectual Property Indicators)基準報告指出,商標、工業設計及實用新型的申請量較前一年度成長,並以中國,美國和日本居前三位;另就申請類別而言,總成長比率分別為專利占9%、商標占6.4%、工業設計占2.5%、和植物品種占6.3%。   報告統計結果顯示,2013年全球專利申請案件約260萬件,比起前一年成長了9%,其中,中國大陸占總申請量的三分之一,其次為美國占總申請量的22%,日本申請量達32萬筆,排名為全球第三位。   報告另指出,專利申請領域依序為,電腦技術佔7.6%、電子機械佔7.2%、測量佔4.7%、數位通訊佔4.5%及醫療技術佔4.3%。   除專利外,其他的智慧財產申請情況,商標申請量上升近500萬件,亦以中國大陸排名首要。另工業設計申請案約達124萬筆,較前一年度成長約2.5%,中國大陸占總申請量的53%。   WIPO總幹事Francis Gurry表示,綜觀全球智慧財產申請全貌,中國大陸及美國於智慧財產權申請量仍明顯成長,而相對於歐洲及日本整體申請量則有明顯衰退之趨勢。

美國紐約州通過《政府自動化決策監督法》規範州政府使用自動化決策系統

紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。

桃莉羊誕生十年 複製技術之醫療運用距收成階段仍遙遠

  十年前的 7 月 5 日 ,全世界第一隻複製的哺乳類動物桃莉羊在英國誕生。 複製羊成功的案例,吸引了如潮水般的錢潮,流入探索利用這項新技術的領域,諸如有關治療癌症、心臟病、阿茲海默症和其他嚴重疾病的研究。科學家應用在姚莉身上的技術是屬於「細胞核轉置技術」( SCNT ),簡言之,是把卵子的細胞核取出,然後把身體細胞的細胞核放入這個卵子中。在這個新建構的卵子中,只有來自身體細胞的染色體,而沒有原卵子的染色體,新卵子中僅含有提供身體細胞者的基因組,所以稱之為「複製」。科學複製有很大的潛在風險,代價又高,但它對醫學研究仍有很大的貢獻,其中最引人注意的,就是可取得胚胎幹細胞。   幹細胞是一群尚未完全分化的細胞,同時具有分裂增殖成另一個與本身完全相同的細胞,以及分化成為多種特定功能的體細胞兩種特性,在生命體由胚胎發育到成熟個體的過程中,扮演最關鍵性的角色。研究人員相信未來可以利用幹細胞,修復或是更換受傷或是病變的器官中的細胞或組織,特別是利用有患者自己基因的幹細胞組織移植,可以避免免疫系統的排斥現象。   當年科學家複製桃莉羊時所抱持之野心不小,然而這十年來,科學家們並沒有能夠達成以幹細胞治療人類疾病的目標,雖然因複製 技術本身具有高度爭議性,許多國家已立法予以規制,然卻依舊無法避免如 前首爾大學教授黃禹錫偽造幹細胞研究成果的醜聞發生,這項醜聞使原本即因幹細胞研究和倫理會產生衝突而不易獲得公私部門經費支持的研究工作,更為雪上加霜。   英國胚胎學者指出,回顧過去醫學研究史上的新發現,不論是試管嬰兒或是其他的技術,從第一次到最後技術完全成熟階段,都需要花很長的時間一步步完成,未來可能還需要五十年的時間,複製技術對醫學的貢獻才可能到達豐收階段。

TOP