世界經濟論壇發布《贏得數位信任:可信賴的技術決策》

  世界經濟論壇(World Economic Forum, WEF)於2022年11月15日發布《贏得數位信任:可信賴的技術決策》(Earning Digital Trust: Decision-Making for Trustworthy Technologies),期望透過建立數位信任框架(digital trust framework)以解決技術開發及使用之間對數位信任之挑戰。

  由於人工智慧及物聯網之發展,無論個人資料使用安全性還是演算法預測,都可能削弱人民對科技發展之信賴。本報告提出數位信任路線圖(Digital trust roadmap),說明建立數位信任框架所需的步驟,以鼓勵組織超越合規性,指導領導者尋求符合個人與社會期望之全面措施行動,以實現數位信任。路線圖共分為四步驟:

  1.承諾及領導(commit and lead):數位信任需要最高領導階層之承諾才能成功,故需將數位信任與組織戰略或核心價值結合,並從關鍵業務領域中(例如產品開發、行銷、風險管理及隱私與網路安全)即納入數位信任概念。

  2.規劃及設計(plan and design):透過數位信任差距評估(digital trust gap assessment)以瞭解組織目前之狀態或差距,評估報告應包括目前狀態說明;期望達成目標建議;治理、風險管理與合規性(governance, risk management and compliance, GRC)調查結果;將帶來之益處及可減輕之風險;計畫時程表;團隊人員及可用工具;對組織之影響等。

  3.建立及整合(build and integrate):實現數位信任需關注人員、流程及技術等三大面向。首先需確保人員能力、達成該能力所需之資源,以及人員溝通與管理;第二,定義組織數位信任流程,包括制定計劃所需時程、預算及優先實施領域,調整目前現有管理流程,並識別現有資料資產;最後,針對技術使用,可考慮使用AI監控、雲端管理系統以及區塊鏈等,以監測資料之使用正確性及近用權限管理。

  4.監控及滾動調整(monitor and sustain):建立數位信任框架後,需持續建構相關績效及風險評估程序,以確保框架之穩定,並根據不斷變化的數位信任期望持續改善,以及定期向董事會報告。

相關連結
你可能會想參加
※ 世界經濟論壇發布《贏得數位信任:可信賴的技術決策》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8942&no=57&tp=1 (最後瀏覽日:2026/02/16)
引註此篇文章
科法觀點
你可能還會想看
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

老鼠耳朵LOGO引發商標之爭--迪士尼v.s.加拿大知名DJ

  加拿大知名DJ Deadmau5去年(2013年)6月向美國專利商標局申請一個貌似迪士尼米奇老鼠樣子的logo為商標(一個大圓加上兩個小圓盤當作耳朵),此舉引發迪士尼的不滿,於本週二向美國專利商標局提出異議。   迪士尼認為Deadmau5所申請的logo跟其知名的米奇老鼠耳朵(Mickey ears)太過近似,若美國專利商標局核准註冊Deadmau5的logo將可能對其在美國及世界各地的事業有所損害,所以迪士尼正試圖阻止Deadmau5於美國取得註冊商標。   根據Deadmau5的律師陳述,Deadmau5一直以來都帶著老鼠頭形狀的頭套出現在各場合,時間已長達10年已上,且已於超過30個國家取得老鼠頭形狀的註冊商標,包含日本、得國、義大利及英國等。   而此位33歲的知名DJ Deadmau5則於社群網路上發文表示他已經決定好要奮力對戰迪士尼,迪士尼此種積極保護其米奇老鼠商標的行為已行之有年、眾所皆知。例如1989年時迪士尼成功透過法律行動的威脅,讓位於佛羅里達州的三家幼兒照顧中心清除了原本漆於牆上的米奇老鼠和其他迪士尼卡通人物角色。   此次商標註冊爭議,迪士尼究竟能否成功阻止Deadmau5註冊取得類似米老鼠耳朵樣式的logo,值得後續關注。

歐盟個資保護委員會大致認定南韓個資保護法具適足性認定,但須進一步評估

  歐盟個資保護委員會(EDPB)今(2021)年9月27日,就與南韓個人資料保護法(Personal Information Protection Act, PIPA)之適足性認定草案發表意見,認為南韓的個資保護框架與歐盟大致相同。但EDPB 同時也指出,在歐盟執委會做出決定之前,某些部分仍需要釐清。釐清的部分包含:   今年6月歐盟執委會公布並通過的適足性認定草案中,該草案之可執行性與有效性不應僅拘束南韓個資保護機構,也應對司法機構具有效力。除此之外,EDPB 也針對南韓PIPA 免除多項匿名化資訊之義務提出質疑;又南韓相關法令對「同意」之撤銷(或撤回)事由有所限定,應確保其對資料主體「同意」之保障持續符合適足性認定的要求。   至於在資料進一步移轉(onward transfers)方面,EDPB 認為即便資料主體知悉並同意其個資傳輸,仍應告知其資料是否會移轉到第三國之相關風險;以及若個資主體的同意無法符合GDPR 對有效同意之定義時(例如雙方地位不對等時,該同意即非有效),該個資不會從南韓之資料控管者傳輸至第三國;在對此議題南韓未具體修訂相關法令時,與國安相關的個資若進一步移轉,是否會受到憲法框架(如比例原則)和PIPA 中個資保護原則的充分保障?   而在行政部門存取傳輸到南韓的個資方面,許多議題也需要釐清並引起關注。如與國安方面相關的個資處理,係受PIPA 抑或其他更為限縮的法令限制?又電信業者自願向國安部門揭露使用者個資時,必須同時通知相關的個資主體;EDPB 並希望歐盟執委會釐清,若歐洲經濟區(EEA)內的個人向南韓個資保護機構或司法機構提出救濟時,相關的救濟程序是否實質有效(例如舉證責任的規定為何)?   於新聞稿中,EDPB 主席 Andrea Jelinek 表示:「歐盟對此適足性認定相當重視,因其將涵蓋公部門與私部門資料的傳輸。而適足的個資保護對支持歐盟與南韓的長期關係與個人權利、自由方面至關重要。雖然EDPB 認為南韓的個資保護框架與歐盟大致相同,然仍建議歐盟執委會密切關注適足性認定的各方發展。」

淺析企業如何善用無形資產獲取商業利基

TOP