世界經濟論壇(World Economic Forum, WEF)於2022年11月15日發布《贏得數位信任:可信賴的技術決策》(Earning Digital Trust: Decision-Making for Trustworthy Technologies),期望透過建立數位信任框架(digital trust framework)以解決技術開發及使用之間對數位信任之挑戰。
由於人工智慧及物聯網之發展,無論個人資料使用安全性還是演算法預測,都可能削弱人民對科技發展之信賴。本報告提出數位信任路線圖(Digital trust roadmap),說明建立數位信任框架所需的步驟,以鼓勵組織超越合規性,指導領導者尋求符合個人與社會期望之全面措施行動,以實現數位信任。路線圖共分為四步驟:
1.承諾及領導(commit and lead):數位信任需要最高領導階層之承諾才能成功,故需將數位信任與組織戰略或核心價值結合,並從關鍵業務領域中(例如產品開發、行銷、風險管理及隱私與網路安全)即納入數位信任概念。
2.規劃及設計(plan and design):透過數位信任差距評估(digital trust gap assessment)以瞭解組織目前之狀態或差距,評估報告應包括目前狀態說明;期望達成目標建議;治理、風險管理與合規性(governance, risk management and compliance, GRC)調查結果;將帶來之益處及可減輕之風險;計畫時程表;團隊人員及可用工具;對組織之影響等。
3.建立及整合(build and integrate):實現數位信任需關注人員、流程及技術等三大面向。首先需確保人員能力、達成該能力所需之資源,以及人員溝通與管理;第二,定義組織數位信任流程,包括制定計劃所需時程、預算及優先實施領域,調整目前現有管理流程,並識別現有資料資產;最後,針對技術使用,可考慮使用AI監控、雲端管理系統以及區塊鏈等,以監測資料之使用正確性及近用權限管理。
4.監控及滾動調整(monitor and sustain):建立數位信任框架後,需持續建構相關績效及風險評估程序,以確保框架之穩定,並根據不斷變化的數位信任期望持續改善,以及定期向董事會報告。
Proprius21專案乃是日本東京大學提供企業界可以與該校共同進行研究的一種機制,屬產學合作方式之一。此專案之提出,係該校有鑒於過去產業界與學術界合作進行共同研究的模式,多以特定的企業與特定的研究室間進行一對一的研究為主。然此一共同研究方式雖可讓大學所產出的知識貢獻給社會。但仍嫌規模過小,課題及責任分擔或目標成果不夠明確,所以需要一個可以創造更大規模的創新的機制。基此,東京大學希望透過Proprius21專案創造一個可由該校內部數個單位或研究室,共同參與大型研究主題的專案,以實現從多樣化的觀點來因應數個或一個企業需求之共同研究(多對多或多對一),並結合校內能量完成提案的機制。 東京大學規劃在校內以三階段活動進行Proprius21專案:(1)公開交換意見,即讓「產業界與學術界相遇的場合」的廣場活動。(2)濃縮出最佳的主題,以及尋找最佳成員之個別活動。(3)由成員縝密地製作計畫,由成員以外的人審視計畫內容,打造一個更為優質計劃的篩選活動。 為了推動Proprius21專案,東京大學係由產學合作研究推進部協助日本企業與校內研究人員進行個別的會議及研討會或研習營等活動,同時也針對企業在決定研究主題後,至計畫成案為止間之各階段提供各種支援。此外,該部人員也會接受來自產業界的諮詢,並在製作計畫之際,適當地介紹校內的職員,提供技術建議或審視計畫的內容等各種支援。
何謂瑞士種子資金投資競賽(Venture Kick)瑞士為縮短新創公司走向市場時間,成立種子資金投資競賽(Venture Kick),透過階段競賽方式,擇選具發展潛力之高科技創新創業團隊,並提供國內外創業輔導資源與資金,促成瑞士創新成果產業化運用之目標。Venture Kick共分為三個階段的競賽:第一階段係針對創新構想(business idea)作評分,每月選出8個團隊作創新構想的報告,另從中取4個團隊進入第二階段,並獲取獎金1萬元;第二階段會就進一步的商業模式作評選,包括經營策略、目標客戶以及策略夥伴等,進入第二階段的3個月內,各團隊藉由專家指導,發展適合之商業模式與經營策略,另再選出一半的團隊進入第三階段評選和獲取獎金2萬,最後階段之評選,擇以協助競賽團隊設立新創公司為目標,競賽團隊應於進入第三階段6個月後完成進入市場準備與提出完整商業營運計畫,最後會從2個團隊中選出1個具發展潛力之競賽團隊給予10萬元之創業基金。截至目前,受到贊助新創公司高達250家,總金額超過1500萬瑞士法郎
美國食品藥物管理局修訂《臨床研究電子系統、電子紀錄及電子簽章:問答集》指引草案美國食品藥物管理局(U.S. Food and Drug Administration, US FDA)於2023年3月15日修訂《臨床研究電子系統、電子紀錄及電子簽章:問答集》(Electronic Systems, Electronic Records, and Electronic Signatures in Clinical Investigations: Questions and Answers)指引草案,為試驗委託者、臨床研究人員、人體研究倫理審查委員會、受託研究機構及其他利害關係人統整電子系統、電子紀錄及電子簽章常見問答,供食品、醫療產品、菸草製品及動物新藥臨床研究參考。 本指引草案修訂2017年6月21日所發布的《21 CFR part 11臨床研究使用電子紀錄及電子簽章—問答集》(Use of Electronic Records and Electronic Signatures in Clinical Investigations Under 21 Part 11-Questions and Answers),並將於本指引最終版確定後,取代2007年5月10日所發布的《臨床研究使用電腦系統》指引(Computerized Systems Used in Clinical Investigations)。US FDA認為電子系統、電子紀錄及電子簽章是可信且可靠的,並且通常可等同於紙本紀錄及手寫簽名的方式。 本指引修正重點如下: 一、新增電子系統驗證的風險基礎方法,以確保臨床研究建立、修改、維護、歸檔、檢索、傳輸電子資料及紀錄的真實性、完整性及機密性。 二、統整試驗委託者與資訊科技服務供應商合作應注意事項,以確保電子紀錄符合監管要求。 三、新增數位健康科技(digital health technology, DHT)定義及使用DHT考量重點。 關於臨床研究使用DHT,亦可參考2021年12月23日所公布的《透過數位健康科技擷取臨床研究遠端資料》(Digital Health Technologies for Remote Data Acquisition in Clinical Investigations)指引草案。該指引草案針對DHT的選擇、驗證、應用、訓練及風險提供相關建議。於臨床研究使用電子系統、電子紀錄及電子簽章已為國際趨勢,對於各國相關規範值得持續關注。 本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw)
演算法歧視將適用於《紐澤西州反歧視法》2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。 隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。 一、《紐澤西州反歧視法》之適用主體及適用客體 《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。 此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。 二、 歧視行為的三種樣態 1.差別待遇歧視 差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。 2.差別影響歧視 差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。 3.未提供合理調整 合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。 為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。