英國技術移轉政府辦公室(Government Office for Technology Transfer, GOTT)於2022年10月設立於英國索爾福德(Salford);其為英國商業、能源與產業策略部(Department for Business, Energy & Industrial Strategy, BEIS)之轄下機構,設立之旨在於促進公部門(public sector)知識資產(knowledge asset)流通利用,以為英國帶來經濟、社會及財政上效益。
所謂「知識資產」係指—智慧財產權、專門技術、資料、品牌、業務流程、專家資源及技術等;目前英國關於公部門知識資產之估值,總計約超過1060億英鎊。而所謂「技術移轉」係指使這些資產與他機構分享,以刺激創新及帶動新產品、流程及服務的研發,並促進更多商業創投(commercial venture)的可能。
GOTT具有跨部門的職權,使公部門可增強其對自身知識資產的辨識、研發與利用,並鼓勵公部門在管理其知識資產上,可更具創新性及具有企業家精神。目前,GOTT已開始與其他公部門在創新上合作,例如一造價更低的高密度真空紫外光(Vacuum Ultra-Violet, VUV)光源機,以淨化水質;或以石墨烯(graphene)製成生物傳感器(biosensor),以使在人體上以生物標記(biomarker)偵測不同健康狀況及疾病。
GOTT係以提供資金和專業知識的方式,以在跨部門政府間,進行創新項目的支持;依據英國政府早先所編列的一「關於政府部門應如何管理知識資產」的指南(The Rose Book: guidance on knowledge asset management in government,下簡稱The Rose Book),GOTT係以「提供對The Rose Book之詢答」、「提供對於管理知識資產之訓練」、「形成關於知識資產之人脈網」、「舉辦活動以喚起對知識資產管理重要性的認識」、「告知不同部門其可能擁有的知識資產及可運用機會」等方式,對公部門進行協助(The Rose Book第8.2點參照)。
而依照The Rose Book第8.4點,GOTT亦將與以下單位,分就上述不同事項,及就知識資產爭訟事件提供建言等,進行合作,以對其他公部門提供協助:(1)英國智慧財產局(Intellectual Property Office);(2)英國國防部(Ministry of Defence);(3)英國犁頭創新中心(Ploughshare Innovations);(4)政府法務處(Government Legal Department);(5)國家檔案館(The National Archives)。
而在後續成果運用上,The Rose Book第6.1點提及,公部門於運用知識資產時,可就很多面向進行考慮。除尋求「商業上的回報」外,亦可將「促進各別部門及不同部門間公共事務之進行」,以及「為商業、慈善團體及人民之使用」一事納入考量,藉以達到經濟、社會及財政上效益;而就「商業上的回報」而言,依照The Rose Book第6.35點,除最常見的「技術授權」及「販賣知識資產」外,亦有「衍生新創公司」(spin-outs)及合資公司(joint ventures)等方式。而一知識資產可如何被適當運用,則可尋求專家意見。
本文為「經濟部產業技術司科技專案成果」
美國歐巴馬總統於2013年5月9日正式簽署「促進政府資訊開放並利機器讀取」行政命令(Executive Order 13642–Making Open and Machine Readable the New Defaut for Government Information),推崇聯邦政府過去釋出氣候、全球定位系統(GPS)等資訊對於私部門產業創新及新創事業(entrepreneurship and star-up)之正面影響,盼未來所有新增加的政府資料在資訊安全和隱私權雙重確保之前提下,將開放以可供機器可讀取之格式給公共大眾,帶動整體經濟正面循環發展。之前,美國推動聯邦政府資料開放政策,重要者為白宮科學技術政策辦公室(Office of Science and Technology Policy, OSTP)於2009年3月份啟動「開放政府倡議」(Open Government Initiative),民眾可透過「Data.gov」入口網站 ,取得高價值、機器可讀取之聯邦政府資料。 近年來,在公部門政府政策鼓勵導引下,不同的產業也逐漸發展出適用於特定產業的共同互通性標準(sectoral interoparability)。以醫療衛生領域為例,從2010年開始,歐巴馬總統乃宣布「藍色按鈕倡議」(Blue Button Initiative),病患得透過特定網頁(web-based)簡易下載其健康資訊(health information),並可供重複利用的格式下;同時,患者也可以選擇將該資訊分享給健康照護提供者(health care provider)、保險公司和信任的第三者(trusted third parties)。該倡議更挑戰軟體開發者(developer)在藍色按鈕的基礎上,開發更多的Apps軟體,使當事人更容易去管理掌控自身健康的狀況。在能源科技領域,近似於藍色按鈕倡議,白宮幕僚科技長Aneesh Chopra於2011年9月,也發起了「綠色按鈕倡議」(green button initaitive),挑戰美國境內大小事業單位(utilities)投入參與該倡議,研發一個機器可讀取之開放格式(a machine-readable open format),使消費者得透過連線網路重複近取之。 有鑒於網際網路開放的特性,且近年來來自外國網路攻擊不斷,於2013年2月份,NIST與國際間重要標準組織,如ISO、IEC和IEEE,首度就感應網絡(sensor networks)、機器對機器(M2M)和智慧聯網(IoT),提出一個跨界面之共通標準計畫(ISO/IEC/IEEE P21451-1-4 XMPP),該共通標準計畫內容包含: 封包傳輸(檢測)、全球獨特辨識、政策控制和加密,此共通標準得確保未來巨量資料領域資料近取之安全性 。
Google提供免費大量的專利及商標資料美國專利商標局(下稱USPTO)於6月2日和Google簽訂一協議,為期兩年Google將免費協助USPTO提供超過10TB(terabytes)大量的專利及商標相關資訊,提供使用者一次下載大量資料。其下載網站為http://www.google.com/googlebooks/uspto.html,該網站載明,所有的原始資料都來自於USPTO,Google未修改任何資料,只將檔案轉為zip壓縮檔。 早期專利及商標的資料是由使用者付費後方可由政府的DVD取得,所以公司往往花費龐大的費用在於取得所需要的資料。 USPTO表示,IP群體渴望USPTO可提供大批機器可閱讀的格式,然而USPTO未具備相關的技術能力。目前此協議是過渡的解決方案,USPTO正發展策略,希望未來能讓合作承包商獲得大量專利商標相關資料,並提供給大眾使用。 Google工程經理Jon Orwant表示,Google非常高興能與USPTO合作,以促進專利及商標資料更具存取性(accessible)及有用性,更重要的為,使公開的資料更容易蒐集與分析。 為可經由Google下載相關專利及商標資料,包括已獲證圖像(grant images),已獲證全文(grant full text),已獲證目錄資料(grant bibliographic data),已公開申請案(published applications),轉讓(assignment),維護費用事項(maintenance fee events),USPTO Red Book及分類資料(classification information)等。USPTO表示,未來將與Google再合作提供額外的資料,包括專利及商標申請歷史檔案及其相關資料。
經濟部擬推動太陽能與生質能技術,發展成為新雙星產業國內半導體產業及面板產業等科技產業,近年發展瀕臨瓶頸,尤其是面板產業,投資動輒上千億元,但這些資金密集產業,受景氣循環波動很大,半導體本質上又是代工型產業,面對全球化浪潮,必須思考如何走出代工微利宿命,太陽能光電及生質能是台灣最具發展潛力的明星產業,發展潛力更足以凌駕半導體及面板雙星產業,成為台灣未來的產業雙星。 目前半導體及面板產業,產值達兆,再生能源產業短期內難取代,不過,如果技術可以有所突破,爆發力將相當大。當前除經濟部大力推動休耕的農田轉作向日葵、大豆等能源種植,推廣生質柴油外,中研院研究團隊已可以從稻桿的纖維素提煉酒精核能所也有煉製酒精汽油技術,一旦跨部會研究團隊機制整合,並透過基因改造提升煉油技術,將可獲致驚人的突破。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。