於2023年2月28日,歐盟議會( European Parliament )工業、研究和能源委員會( Committee on Industry, Research and Energy )就2022年公開之資料法草案( Data Act )提出修正報告,該報告支持資料法草案賦予使用者訪問、使用並共享其資料的權利,以發揮出工業資料的經濟潛力,並就資料法草案內容提出修改之報告(以下簡稱修改草案)。
以下就修改草案對於資料持有者權利之影響摘要說明如下:
1、對資料持有者之營業秘密的保護,資料持有者就其有營業秘密之資料,能要求使用者保護該資料的秘密性,並要求使用者要採取一定之保密措施,若使用者未能執行該保密措施,資料持有者可暫停資料共享;
2、資料持有者提供資料之對象為公司時,可對其請求之合理補償,該合理補償包含產生/處理資料與提供資料等讓資料可用的成本,惟該資料成本若可與其他資料請求分攤,則不應由單一使用者支付全部費用,且對於小/微型企業,不得請求超過提供資料的直接成本;
歐盟為使工業資料可充分發揮其效益,資料法草案旨在推動資料共享並建立相對的遊戲規則,此次修改草案從營業秘密與成本補償的角度切入,以保障資料持有者權利,該修改草案預計於3月中全體會議上進行表決,其規範對象包含有在歐盟提供物聯網/雲端產品或服務之企業,國內企業亦會因網路跨境性質而受影響,可參考資策會科法所所發布之重要數位資料治理暨管理制度規範(EDGS)預做準備。
「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
英國科學辦公室於2016年11月9日,發布一份政策報告:「人工智慧:機會與未來決策影響(Artificial intelligence: opportunities and implications for the future of decision making)」,介紹人工智慧對於社會及政府的機會和影響,此份政策報告並提出以下各項重要建議: (一)關於人工智慧及應用界定與發展 人工智慧是指由人工製造系統所表現出來的智慧。不僅是將現有的流程自動化,還包含制定目標,並利用電腦程式實現這些目標,常見案例包括線上翻譯、語音辨識、搜尋引擎篩選排序、垃圾郵件過濾、透過用戶回饋改善線上服務、預測交通流量、環境或社會經濟趨勢發展觀察等。 (二)未來對社會及政府利益及衝擊 人工智慧針對提高生產力有巨大的潛力,最明顯的就是幫助企業或個人更有效地運用資源,並簡化大量資料的處理,例如Ocado 及 Amazon這樣的公司正充份利用人工智慧改善倉儲及銷售網路系統,使得客戶可便利快速購得網購商品。 目前,政府也日益增加相關技術的運用,以提高公共服務效率,使資源達到最佳化分配;減少決策者被誤導的可能;使政府決策透明化;確保各部門更了解人民的意見。然政府在利用人工智慧及巨量資料時,應遵守倫理使用指南,並遵守英國資料保護法及歐盟一般資料保護規則等相關法規。 在巨量資料、機器人、自動系統對於勞動市場的衝擊一直都是關注的議題,對於面臨未來工作結構的轉型及相關技術人員的進修及培養,應及早規劃,以適應未來的轉變。 (三)關於相關道德及法律風險管理課題 人工智慧可能潛在相關道德倫理問題。許多專家認為政府應積極管理並降低風險發生可能性,可從以下兩個面向思考: (1)研究機器學習與個人資料運用結合時,對個人自由、隱私和同意等概念的影響。 (2)調適由人工智慧作決策行為時的歸責概念和機制。 有關實際案例之研究,則包括,執法單位在應用預測技術時,應避免以種族、國籍、地址作為標準,並嚴守無罪推定原則,以防止民眾受到歧視或不公平的指控;透過人工智慧可從公開資料推測出某些私人訊息或其親朋好友的消息,此訊息即可能超出原先個人同意披露的內容;原先匿名化及去識別化的訊息,因人工智慧功能加強,導至可能被重新識別,故須定期檢視該保護措施是否足夠。另外,人工智慧的演算偏差可能導致偏見的風險,為了降低這種風險,技術人員應採取對應措施。 針對責任及疏失的判斷,目前尚無太多的實務案例,但為保持對使用人工智慧的信任,仍需有明確的歸責制,可能有必要讓首席執行長或高級主管對人工智慧做出的決策負最終責任。許多專家也建議,部分技術內容須保持透明度,以確定技術使用時是否有盡到相關注意義務。 人工智慧已成為未來發展趨勢之一,對於社會整體層面影響將越來越深,新的技術除了可提升生產力,帶來便利的生活,同樣也會帶來衝擊。為促進相關產業發展及推展新技術的使用,應打造技術發展友善環境,並對於公眾安全進行相關風險評估,如果風險屬於現有監管制度範圍,應評估是否可充分解決風險,或是須要做相對應的調適。另外,在人工智慧融入現實世界同時,相關業者應注意相關產品安全性、隱私權保護和從業人員的倫理教育,以提高大眾對新技術的接受及信賴,並確保對於未來挑戰及轉變已做好萬全準備。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
美國新一代公共安全無線寬頻的應用公共安全和國土安全局(PSHSB)局長傑米.巴尼特(Jamie Barnett)於2011年3月16日與美國聯邦通訊傳播委員會(Federal Communication Commission)分別先後宣示將更近一步加強國家寬頻計畫(The National Broadband Plan)中寬頻通訊科技在公共安全層面的應用。其具體落實在成立國家級的緊急反應互動中心(The Emergency Response Interoperability Center, ERIC)。該中心利用700 MHz頻段成立全國性的公眾安全無線網絡。 促進公共安全無線寬頻通訊的使用,是公共安全和國土安全局最主要的任務。透過建立互動式公共安全寬頻無線技術的操作框架,使警察、消防及緊急醫療人員可使用到最先進的數位式寬頻通訊技術。配備可在任何時間、地點即時傳輸資訊的薄型智慧電話,替代傳統上所使用的對講機。 其次為發展下一代的911通報網絡。目前大約70%的911通話來自手機,可是大多數的911電話通報中心,並沒有配備可接收目前主流行動通訊使用者所傳送的簡訊、電子郵件、視訊或照片的設備。新一代的查詢通知系統(Notice of Inquiry,NOI)可取代傳統的電話,使公眾透過先進的通訊科技獲得緊急救助。雖然精確定位裝置並不在整個系統之中,但通過行動通訊業者所提供的數據,仍可定位需救助者的方位。 美國將寬頻通訊科技落實在公共安全層面的應用,將有助於其提升整體緊急救護的效率。