有鑑於加密資產(crypto-asset)投資交易潛在風險與市場波動性,美國聯邦準備理事會(Federal Reserve Board)、聯邦存款保險公司(Federal Deposit Insurance Corporation, FDIC)與通貨監理局(Office of the Comptroller of the Currency, OCC)於2023年2月23日發布聯合聲明,提出加密資產增加銀行流動性風險情境,例如穩定幣因市場狀況之變動,導致銀行擠兌使大量存款流出,由於存款流入和流出的規模與時間的不可預測性,加密資產相關資金恐造成流動性風險提高,提醒銀行機構應用現有的風險管理原則審慎因應。
依據聲明內容,有效風險管理作法包括:(1)了解加密資產相關實體存款潛在行為的直接和間接驅動因素,以及這些存款易受不可預測波動影響的程度;(2)銀行機構應積極監控加密資產資金來源存在的流動性風險,並建立有效的風險管理控制措施;(3)應與加密資產存款相關的流動性風險納入應變計劃(contingency funding planning),例如流動性壓力測試;(4)評估加密資產相關實體存款之間關聯性。該聲明並強調銀行機構應建立風險管理機制及維持適當有效之內部控制制度,以因應加密資產高流動性風險,確保經濟金融穩健發展。
有鑑於網路使用人口中,不同使用者族群所消耗的傳輸量比例相差懸殊,美國寬頻業者於近來積極推動網路傳輸流量上限管理計畫,且繼Comcast與Time Warner等業者的初步嘗試後,美國最重要的網路服務提供者—AT&T,也宣布將開始進行客戶網路流量管理計畫。 這項嘗試計畫將以限制新的DSL用戶為起點,其所規定的每月下載與上傳流量上限,係依據客戶申請的寬頻方案有所不同,分別被限制在20G至150G (gigabytes)不定。超過的部分則將持續向使用者警告兩個月後,依每超過1G加收一美元的費用,向使用者收費。 至於提出此項管理方案的理由,據AT&T發言人表示,是因為網路頻寬的使用分佈過於不平均,高達46%的頻寬是5%的使用者在使用,而21%的頻寬更是只為極少數的1%用戶所使用,顯然太過集中。根據AT&T的傳輸上限規定,購買傳輸速度3M (megabits)的寬頻使用者,日後每月的傳輸量上限是60G,這大約等於是下載30部DVD畫質電影的傳輸量。 不過,也有分析師指出,現階段欲全面滿足使用者的頻寬需求,對網路服務提供者而言尚非極大的財務負擔,且管制流量上限的作法,可能對既有以「吃到飽」費率方案為基礎,所發展出來的網路應用服務模式,造成極大的衝擊,此亦也可能引發後續有關網路中立性的政策辯論。
黑莓機服務中斷數日,RIM面臨用戶集體求償全球商務人士最喜愛使用的智慧型手機「黑莓機」,在今年(2011)10月中旬出現全球大當機,手機用戶無法上網及收發簡訊,影響範圍從歐洲擴及北美與世界各地。手機製造商Research In Motion (RIM)的首席執行長Mike Lazaridis在官網上以視訊公開向全球用戶道歉,並提出可免費下載100美元的應用軟體作為補償。然而此舉無法平息用戶的怒火,許多使用者正打算對RIM提出訴訟求償,因為中斷服務害他們錯失許多訊息與會議時間。 加拿大魁北克的高等法院就收到使用者對RIM要求經濟補償的集體訴訟,因為RIM所提出的補償措施根本無法彌補中斷服務數天的損失。若法院認同訴訟主張,RIM遭求償的總額或許很高,不過使用者提出的訴求是中斷服務的1.5天,他們無法使用月付25元加幣的無線網路服務,因此按比例分攤每件可能僅1.25元。而在美國的消費訴訟律師,則考慮對RIM提出違約訴訟或是消費詐欺,前者是以RIM未依約盡到其提供服務的責任為主張;而後者消費詐欺的重點則是著眼於,RIM導致消費者誤信黑莓機的可靠性。然而使用者所面臨的困難是,要如何證明他們所受到的損害,高於原本應獲得的服務,而且因為是全區域的服務中斷,在跨州的集體訴訟中還有各州法律適用的問題。有法律專家言明,要證明因為不能使用智慧型手機的功能而造成的實際損害非常困難,畢竟在緊急時刻,溝通(communicate)還有其他選擇方式。
日本啟動大規模自動駕駛實證測試,聚焦高精度圖資與人機介面設置於內閣府內之SIP(跨部會戰略創新推動方案Cross-ministerial Strategic Innovation Promotion Program)「自動駕駛系統」計畫分項,於2017年10月3日起啟動大規模之自動駕駛實證測試。為加速實現系統之實用化,超過20個以上之國內外汽車製造商等機關,預計於東名高速道路、新東名高速道路、首都高速道路及常磐自動車道及東京臨海地區之一般道路,參加之大規模實證實驗。 SIP自動駕駛系統係從2013年開始,以早日實現自動駕駛系統實用化、透過技術普及以減少交通事故和實現次世代交通系統為目標,並協調產官學各界共同領域工作,和將研究開發推進之重點聚焦於自動駕駛用 Dynamic Map高精度3D地圖(由日本7家相關公司共同出資成立之Dynamic Map Platform= DMP 開發之3D地圖)、人機界面 (Human Machine Interface, HMI)、資訊安全、降低行人事故、次世代都市交通等5種技術領域。 研究開發由汽車製造商於公開場合下進行,並接受大眾檢視,於研究開發成果公布同時,也因海外製造商的參與促進國際合作與國際標準化。本次有超過20個機關參加規模,係日本自動駕駛最大規模實證實驗。
OECD發布「促進人工智慧風險管理互通性的通用指引」研究報告經濟合作發展組織(Organisation for Economic Co-operation and Development,下稱OECD)於2023年11月公布「促進AI風險管理互通性的通用指引」(Common Guideposts To Promote Interoperability In AI Risk Management)研究報告(下稱「報告」),為2023年2月「高階AI風險管理互通框架」(High-Level AI Risk Management Interoperability Framework,下稱「互通框架」)之延伸研究。 報告中主要說明「互通框架」的四個主要步驟,並與國際主要AI風險管理框架和標準的風險管理流程進行比較分析。首先,「互通框架」的四個步驟分別為: 1. 「定義」AI風險管理範圍、環境脈絡與標準; 2. 「評估」風險的可能性與危害程度; 3. 「處理」風險,以停止、減輕或預防傷害; 4.「治理」風險管理流程,包括透過持續的監督、審查、記錄、溝通與諮詢、各參與者的角色和責任分配、建立問責制等作法,打造組織內部的風險管理文化。 其次,本報告指出,目前國際主要AI風險管理框架大致上與OECD「互通框架」的四個主要步驟一致,然因涵蓋範圍有別,框架間難免存在差異,最大差異在於「治理」功能融入框架結構的設計、其細項功能、以及術語等方面,惟此些差異並不影響各框架與OECD「互通框架」的一致性。 未來OECD也將基於上述研究,建立AI風險管理的線上互動工具,用以協助各界比較各種AI風險管理框架,並瀏覽多種風險管理的落實方法、工具和實踐方式。OECD的努力或許能促進全球AI治理的一致性,進而減輕企業的合規負擔,其後續發展值得持續追蹤觀察。