簡介人工智慧的智慧財產權保護趨勢

近期人工智慧(Artificial Intelligence, AI)的智慧財產權保護受到各界廣泛注意,而OpenAI於2023年3月所提出有關最新GPT- 4語言模型的技術報告更將此議題推向前所未有之高峰。過去OpenAI願意公布細節,係由於其標榜的是開源精神,但近期的報告卻決定不公布細節(如訓練計算集、訓練方法等),因為其認為開源將使GPT- 4語言模型面臨數據洩露的安全隱患,且尚有保持一定競爭優勢之必要。

若AI產業選擇不採取開源,通常會透過以下三種方式來保護AI創新,包括申請專利、以營業秘密保護,或同時結合兩者。相對於專利,以營業秘密保護AI創新可以使企業保有其技術優勢,因不用公開技術內容,較符合AI產業對於保護AI創新的期待。然而,企業以營業秘密保護AI創新有其限制,包含:

1.競爭者可能輕易透過還原工程了解該產品的營業秘密內容,並搶先申請專利,反過來起訴企業侵害其專利,而面臨訴訟風險;

2.面對競爭者提起的專利侵權訴訟,企業將因為沒有專利而無法提起反訴,或透過交互授權(cross-licensing)來避免訴訟;

3.縱使企業得主張「先使用權(prior user right)」,但其僅適用在競爭者於專利申請前已存在的技術,且未來若改進受先使用權保護之技術,將不再受到先使用權之保護,而有侵犯競爭者專利之虞,因此不利於企業提升其競爭力。

綜上所述,儘管AI產業面有從開源轉向保密的傾向,但若要完全仰賴營業秘密來保護AI創新仍有其侷限,專利依舊是當前各企業對AI領域的保護策略中的關鍵。

本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
你可能會想參加
※ 簡介人工智慧的智慧財產權保護趨勢, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8993&no=57&tp=1 (最後瀏覽日:2026/02/18)
引註此篇文章
你可能還會想看
美國環保署擬針對兩項奈米材料納入顯著新種使用規則

  奈米材質之特性雖有助於開發新穎產品,但對於環境與人體健康是否會造成危害,迄今仍未有定見;為避免奈米科技毫無節制地發展,2008年9月以降,美國環保署(Environmental Protection Agency,EPA)以毒性物質管制法(Toxic Substances Control Act,TSCA)管理奈米材料,並在10月底考慮將奈米碳管納入前述法規中;11月初,更進一步依據毒性物質管制法5(a)(2)發布「顯著新種使用規則(Significant New Use Rule,SNUR)」,將以矽氧烷(siloxane)所改造之奈米矽微粒(silica nanoparticles)與奈米鋁微粒(alumina nanoparticles)列入管理範圍內。   一般而言,化學物質如未列於由EPA所公佈之「化學物質目錄」者,皆應向環保署提出製造前通知(Premanufacture Notice,PMN);而顯著新種使用規則以指定特殊新種化學物質的方式,配合適用製造前通知制度,要求業界針對製造、加工、銷售與使用等過程,提出具體因應措施。申言之,關於前述兩項奈米物質,一旦涉及有別於以往的重大創新製造活動,業者即應於正式進行製造前之90天先行通報環保署,再由其評估該業者是否符合相關條件要求,否則得予以禁止或限制之。   根據環保署既有之測試資料,可以確認奈米微粒得由呼吸與皮膚接觸等方式進入人體。以矽氧烷所改造之奈米矽及奈米鋁,泰半係作為添加劑之用;然而,觀察過往製造前通知所登載之內容,該兩項化學物質無論在呼吸或皮膚接觸所造成之暴露程度尚屬輕微;因此,針對該等奈米材料而向環保署所為之通報流程及審查作業,可能會對於業者後續之生產製造活動形成不確定的阻礙。   有鑒於奈米材料可能對人體健康產生未知風險,為保障奈米工作環境中人員的安全,顯著新種使用規則將於2009年1月起正式生效,作為管理特殊化學物質的監督方式。對於製造或使用奈米材料所可能引發之風險,美國環保署正著眼於環境、健康與安全議題,逐漸採取較為謹慎的政策設計方向,以維護大眾利益。

日本人工智慧(AI)發展與著作權法制互動課題之探討

  日本著作權法第2條第1項第1款規定對著作物定義中,創作性之表現必須為具有個人個性之表現,日本對於無人類行為參與之人工智慧創作物,多數意見認定此種產品無個性之表現,非現行著作權法所保護之產物。人工智慧之侵權行為在現行法的解釋上,難以將人工智慧解釋其本身具有「法人格」,有關人工智慧「締結契約」之效力為「人工智慧利用人」與「契約相對人」間發生契約之法律效果。日本政府及學者對人工智慧之探討,一般會以人工智慧學習用資料、建立資料庫人工智慧程式、人工智慧訓練/學習完成模型、人工智慧產品四個區塊加以探討。日本政策上放寬著作權之限制,使得著作物利用者可以更加靈活運用。為促進著作之流通,在未知著作權人之情況下,可利用仲裁系統。在現今資訊技術快速成長的時代,面對人工智慧的浪潮,日本亦陸續推出相關人工智慧研發等方針及規範,對於爾後之發展值得參酌借鏡。

歐洲藥物管理局「臨床試驗資料公開與近用政策」(草案)之定案日期將延後

  歐洲藥物管理局(European Medicine Agency,EMA)於今年六月下旬起至九月底止,開放接受公眾針對該局所擬「臨床試驗資料公開與近用政策」草案(draft policy on publication and access to clinical-trial data)提出回饋意見。所有公眾建言都將由EMA加以檢視,並將成為上述政策草案正式定案前之參考。原本EMA預計在2013年年底即對上述政策草案拍版定案,然而,由於歐洲藥物管理局收到超過一千則來自四面八方、不同立場之公眾回饋意見,為求妥適、深入檢視、分析這些意見,EMA原訂之定案時程將被迫遞延。新的定案時間表最慢將於十二月中上旬公布。   根據上述「臨床試驗資料公開與近用政策」草案之現行版本(亦即提供公眾評論並回饋意見之版本),原則上,EMA所持有之臨床試驗資料,將依其類型之差異而適用不同的公開或近用標準。依照EMA之分類,試驗資料將被區分為(1)「公開後不會導致個資保護疑慮之試驗資料」、(2)「如經公開,可能產生個資保護疑慮之試驗資料」、(3)「內含商業機密資訊之試驗資料」等三大類。上述第三類之「內含商業機密資訊之試驗資料」不會受到此一政策草案之影響,第二類資料將有限制的公開與提供近用,至於第一類資料,則將公開於EMA網站上供公眾下載。

德國聯網車輛駕駛策略

  德國聯邦政府目標擬定於2020年實現高度自動化駕駛,為達成自動駕駛目標,車聯網(Connected driving)及智慧交通系統(Intelligent transport systems)技術成為必要發展工作項目。車聯網即透過無線通訊技術,使車輛間(Vehicle-to-Vehicle, V2V)或車輛對基礎設施 (Vehicle-to-Infrastructure, V2I)等彼此交換訊息,或是將行車資訊傳輸到伺服器,並透過資訊網路平臺將資料整合利用,並依不同功能需求進行有效監控管理和提供綜合服務。未來,可預見道路使用者的個別交通資訊的質與量將大幅提升,無論是部份自動駕駛或高度自動駕駛,將產生龐大資料量,故系統需要即時迅速的運算能力。例如,前方一旦發生車禍事故,必須通知後方自動模式駕駛車輛即時減緩速度,並適時轉由駕駛人員介入操控。   自動化及車聯網駕駛發展係為跨領域之問題,聯邦政府即針對五大領域問題:基礎設施、法規、創新研發、聯網化、資訊安全及資料保護,提出一連串作法及措施,確保德國汽車產業能保持領先地位。   我國資通訊及汽車零件產業具備技術相對優勢,然應就適合我國車聯網之實際需求發展,促進相關產業創新應用,並利用我國產業優勢與國際接軌,讓台灣在車聯網的發展中取得先機。

TOP