近期人工智慧(Artificial Intelligence, AI)的智慧財產權保護受到各界廣泛注意,而OpenAI於2023年3月所提出有關最新GPT- 4語言模型的技術報告更將此議題推向前所未有之高峰。過去OpenAI願意公布細節,係由於其標榜的是開源精神,但近期的報告卻決定不公布細節(如訓練計算集、訓練方法等),因為其認為開源將使GPT- 4語言模型面臨數據洩露的安全隱患,且尚有保持一定競爭優勢之必要。
若AI產業選擇不採取開源,通常會透過以下三種方式來保護AI創新,包括申請專利、以營業秘密保護,或同時結合兩者。相對於專利,以營業秘密保護AI創新可以使企業保有其技術優勢,因不用公開技術內容,較符合AI產業對於保護AI創新的期待。然而,企業以營業秘密保護AI創新有其限制,包含:
1.競爭者可能輕易透過還原工程了解該產品的營業秘密內容,並搶先申請專利,反過來起訴企業侵害其專利,而面臨訴訟風險;
2.面對競爭者提起的專利侵權訴訟,企業將因為沒有專利而無法提起反訴,或透過交互授權(cross-licensing)來避免訴訟;
3.縱使企業得主張「先使用權(prior user right)」,但其僅適用在競爭者於專利申請前已存在的技術,且未來若改進受先使用權保護之技術,將不再受到先使用權之保護,而有侵犯競爭者專利之虞,因此不利於企業提升其競爭力。
綜上所述,儘管AI產業面有從開源轉向保密的傾向,但若要完全仰賴營業秘密來保護AI創新仍有其侷限,專利依舊是當前各企業對AI領域的保護策略中的關鍵。
本文同步刊登於TIPS網站(https://www.tips.org.tw)
為迎接數位貨幣此種新興產業所帶來的挑戰,在企業經營者與立法者的同意下,北卡羅萊納州於2016年6月通過H.B. 289法案,擴大該州貨幣傳輸法(Money Transmitters Act )的適用對象,將虛擬貨幣交易所納為貨幣移轉服務商,其須向主管機關申請特定執照,並繳納保證金,立法者更於2017年追加繳納保險金的規定,以避免資安危機。法案內對虛擬貨幣的定義為,一種能表彰價值的數字,可經由電子交易並具有交易媒介(medium of exchange)、計價單位(unit of account)和價值儲存(store of value)等功能,但虛擬貨幣並不是美國政府所承認的法定貨幣(legal tender status)。 又虛擬貨幣的經營業務,範圍包含建立於區塊鏈的虛擬貨幣活動,但排除挖礦者、使用區塊鏈技術的軟體公司,像是智能合約平台(smart contract platforms)、智能資產(smart property)等適用對象。申請貨幣移轉業務執照,須繳交1500美金的費用,再加上每年至少5000美元的評估費用。此外,為保障使用者所要求的保證金部分,貨幣移轉金額若低於100萬美元者,必須提出15萬美元作為擔保,若超出100萬美元者,則須提出更高的保證金。此項法案的出爐強化了法律的明確性,為該州經營虛擬貨幣的業者,提供一項可預見的規範,該法案未來是否能成為其他州成立新法的指標,仍有待後續發展。
歐盟啟用半導體供應鏈示警系統,監測各成員國半導體供應鏈狀況歐盟執委會(European Commission, EC)於2023年5月10日宣布啟用《歐盟晶片法案》(EU Chips Act)三支柱之一的半導體供應鏈示警系統(Semiconductor Alert System),其目的在於監測半導體供應鏈短缺之問題。 根據《歐盟晶片法案》,歐盟各成員國的半導體供應鏈主管機關須定期執行半導體供應鏈的觀測任務,以隨時確認半導體供應鏈之狀況。然而,由於歐盟係由眾多不同的國家所組成,各成員國間訊息的流通相比於其他單一國家可能較為緩慢,故EC決定創建半導體供應鏈示警系統,交換半導體供應鏈資訊以解決上述問題。在此系統中,私人企業得單獨對所處產業中的早期半導體短缺進行回報,惟個別產業常常單獨誇大或高估危機的發生可能性,對此,EC成立了歐盟半導體專家小組(European Semiconductor Expert Group, ESEG),協助收集各半導體產業與成員國所回報之訊息,除將其用於建立風險評估外,亦彙整並分析成有價值的資訊後再分享給各成員國。 若資訊收集完成後,ESEG或EC察覺歐盟確實有發生半導體供應鏈崩潰的危險,EC將召開特別委員會會議(extraordinary board meeting),共同尋求解決方案,包含聯合政府採購(joint procurement),或與第三國進行合作,以合力解決半導體供應鏈之危機。
瑞士洛桑國際管理發展學院公布《2022年IMD世界競爭力年報》瑞士洛桑國際管理發展學院(International Institute for Management Development, IMD)於2022年6月15日公布《2022年世界競爭力年報》(IMD World Competitiveness Yearbook)(以下簡稱本報告)。本報告以「經濟表現」(Economic Performance)、「政府效能」(Government Efficiency)「企業效能」(Business Efficiency)和「基礎建設」(Infrastructure)四大指標(含333項子標)評比63個經濟體。評比結果:全球競爭力前5名依序為丹麥、瑞士、新加坡、瑞典與香港;而其他重要經濟體之排名,如臺灣第7、美國第10、中國第17、南韓第27與日本第34。 丹麥34年來首次位列第一,去(2021)年居首的瑞士則跌至第2名。究其原因,丹麥因公共債務與政府赤字的減少,其「經濟表現」大幅提升。至於新加坡,雖於2019年與2020年皆居於榜首,去年則滑落至第5名。對此,IMD主管Arturo Bris表示,新加坡嚴格的防疫政策,限制了國際服務與人員流動,致使去年的全球競爭力排名下滑。然新加坡今年排名上升係因「經濟表現」強勁,其「國內生產總值」增長,「國內經濟」、「國際貿易」和「科技基礎建設」等子標皆位居全球第一,但「經營管理」卻排名第14、「科學基礎建設」排名第16、「健康與環境」更排名第25,仍處於相對較後的位置。若欲提升排名重回榜首,新加坡政府需設法應對外部經濟發展所帶來的挑戰(如全球供應鏈中斷、商品價格上漲等)、協助仍受COVID-19疫情影響的行業復甦經濟,並幫助企業走向低碳未來等永續發展方面作改善。 而我國,由去年第8名進步至今年第7名,突顯我國在全球COVID-19疫情肆虐之情況下,整體競爭力仍獲國際肯定。政府亦將以本報告之評比結果為鑒,協助企業加強全球布局,並積極推動前瞻基礎建設、六大核心戰略產業、2050淨零排放等產業轉型升級,期盼能持續提升我國競爭力。
英國民航局發布航空AI監管策略三文件,以因應AI於航空領域之挑戰與機會英國民用航空局(United Kingdom Civil Aviation Authority, CAA)於2024年12月3日發布「CAA對新興AI驅動自動化的回應」(The CAA's Response to Emerging AI-Enabled Automation)、「航空人工智慧與先進自動化監管策略」(Part A:Strategy for Regulating AI and Advanced Automation in Aerospace)以及「CAA 應用AI策略」(Part B: Strategy for Using AI in the CAA)等三份文件。首先,前者概述CAA對於AI應用於航空領域之總體立場,強調以確保安全、安保、消費者保護及環境永續等前提下,促進AI技術在相關航空領域之創新與應用;其次,「航空人工智慧與先進自動化監管策略」著重說明如何於航空領域監管AI技術之使用,以兼顧推動創新並維持安全性及穩健性;最後,「CAA 應用AI策略」則聚焦於CAA內部使用AI技術提升監管效率與決策能力的策略。 由於AI正迅速成為航空產業之重要技術,其應用範圍包含航空器、機場、地面基礎設施、空域、航太、消費者服務等,具有提高航空安全性、運作效率、環境永續性與消費者體驗之潛力。然而,相關技術風險與監管挑戰亦伴隨而至,仍需新的監管框架應對潛在風險。因此,總體而言CAA以推動AI創新技術、提升航空產業效率與永續性為目標,透過了解技術前景、建立AI通用語言,並以航空領域之五大原則為監管框架之制定核心,建立靈活的AI監管體系,維持最高水準的安全保障。五大原則及案例分述如下: (1) 安全、安保與穩健性(Safety, Security and Robustness),例如:使用AI分析航空器感測器資料進行預測維護,以利提早發現問題。 (2) 透明與可解釋性(Transparency and Explainability),例如:清楚記錄AI系統如何提出空中交通路線建議。 (3) 可質疑性與矯正機制(Contestability and Redress),例如:制定一套明確的流程,以便航空公司查詢並了解AI生成的安全建議。 (4) 公平與偏見(Fairness and Bias),例如:確保自動化旅客篩查安檢系統公平對待所有旅客。 (5) 問責與治理(Accountability and Governance),例如:明確界定AI系統在機場運營中的監管角色與職責。 .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em}